
CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 10 (April 8)

1 Which Tasks Become Easy With Bilinear Maps?

Let e : G × G → GT be a bilinear map for which the decisional bilinear Diffie-Hellman
(DBDH) problem is hard.

1. For each of the following computational problems, indicate whether the following prob-
lems are hard:

(a) DDH in G
(b) CDH in G
(c) DDH in GT

2. Will the Diffie-Hellman key-exchange protocol be secure if we use group G? How about
if we use GT ?

Solution

1. Summary: We will show that DDH in G is easy to solve with the help of the bilinear
map e(·). But the other problems listed above are hard. Next, the Diffie-Hellman key
exchange protocol will be secure if it uses GT , but insecure if it uses G. The protocol
is secure if it uses a group for which DDH is hard.

2. Let us recall the DBDH problem:

Definition 1.1 (Decisional Bilinear Diffie-Hellman Problem).

DBDH(n,A):

(a) The challenger samples the parameters of the bilinear map:

pp = (G,GT , q, g, e)← G(1n)

(b) The challenger samples a, b, c, r ← Zq independently and also samples β ← {0, 1}.
Then they give the adversary the inputs:

(pp, ga, gb, gc, e(g, g)abc+rβ)

(c) A outputs a guess β′ for β.

(d) The output of the game is 1 (win) if β′ = β and 0 (lose) otherwise.

We say that the DBDH problem is hard if for all PPT adversaries A,∣∣∣Pr[DBDH(n,A)→ 1]− 1

2

∣∣∣ ≤ negl(n)

3.

Claim 1.2. DDH in G is easy.

1



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Proof. DDH in G can be solved efficiently as follows:

(a) The DDH challenger samples x, y ← Zq independently and sends the adversary
(G, q, g, gx, gy, gz), where either z = x · y mod q or z ← Zq.

(b) The adversary computes e(gx, gy) = e(g, g)x·y and e(g, gz) = e(g, g)z and checks
whether:

e(g, g)x·y = e(g, g)z (1.1)

If so, the adversary guesses that z = x · y mod q. If not, they guess that z ← Zq.

The adversary will win the DDH game with probability 1−negl(n). e(g, g) is a generator
for GT , so equation 1.1 is satisfied if and only if z = x · y mod q. The only way the
adversary can lose is if z ← Zq happens to produce z = x · y mod q, and this occurs
with negligible probability.

4.

Claim 1.3. CDH in G is hard.

Proof.

(a) If CDH in G were easy, then we could use the CDH attacker ACDH to solve the
DBDH problem.

(b) Here is a construction of an adversary for the DBDH game ADBDH:
ADBDH:

i. ADBDH receives inputs (pp, ga, gb, gc, gabc+rβ).

ii. They run ACDH(G, q, g, ga, gb) which outputs h.

iii. They check whether
e(ga, gb) = e(g, h)

which is equivalent to checking whether h = gab. If not, they sample and
output β′ ← {0, 1} and halt. If so, they continue.

iv. Then they check whether

e(h, gc) = e(g, gabc+rβ)

When h = gab, this is equivalent to checking whether abc = abc + rβ. If so,
they output β′ = 0. If not, they output β′ = 1.

(c) The point of checking whether e(ga, gb) = e(g, h) is to determine whether h = gab.
The two conditions are equivalent. ACDH will compute h = gab with non-negligible
probability.

(d) If h = gab, then checking whether e(h, gc) = e(g, gabc+rβ) will correctly decide the
value of β with probability 1− negl(n).

If h = gab, then e(h, gc) = gabc. The condition e(h, gc) = e(g, gabc+rβ) will pass if
and only if abc = abc+ β · r.
Then the only way that β′ ̸= β is if r = 0, but this only occurs with negligible
probability.

2



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

(e) On the other hand, if h ̸= gab, then ADBDH is unable to learn any useful informa-
tion about β, so they guess randomly (β′ ← {0, 1}). This guess is correct with
probability 1

2 .

(f) In total, the success probability of ADBDH at guessing β is:

Pr[h = gab] ·
(
1− negl(n)

)
+

(
1− Pr[h = gab]

)
· 1
2
=

1

2
+ Pr[h = gab] ·

(
1− 1

2
− negl(n)

)
=

1

2
+ non-negl(n) ·

(1
2
− negl(n)

)
=

1

2
+ non-negl(n)

(g) In summary, we’ve shown that if CDH in G is easy, then DBDH is easy. That’s
a contradiction because we are told that DBDH is hard. Therefore, CDH in G in
actually hard.

5.

Claim 1.4. DDH in GT is hard.

Proof.

(a) If DDH in GT were easy, then we could use the DDH attacker ADDH to solve the
DBDH problem. Without loss of generality, let us assume that if DDH is easy in
GT , then Pr[ADDH is correct] ≥ 1

2 + non-negl(n).

(b) Here is a construction of an adversary for the DBDH game ADBDH:
ADBDH:

i. ADBDH receives inputs (pp, ga, gb, gc, gabc+rβ).

ii. They compute e(ga, gb) = e(g, g)ab and e(g, gc) = e(g, g)c.

iii. They run ADDH(GT , q, e(g, g), e(g, g)
ab, e(g, g)c, e(g, g)abc+rβ), which correctly

decides whether abc = abc+ rβ with non-negligible advantage.

iv. If ADDH says that abc = abc + rβ, then ADBDH outputs β′ = 0. Otherwise,
they output β′ = 1.

(c) As long as r ̸= 0 and ADDH correctly decides whether abc = abc+ rβ, then ADBDH

correctly guesses β.

Then:

Pr[ADBDH succeeds] ≥ Pr[ADDH succeeds] · Pr[r ̸= 0] = Pr[ADDH succeeds] ·
(
1− negl(n)

)
= Pr[ADDH succeeds]− negl(n)

≥ 1

2
+ non-negl(n)

(d) In summary, we’ve shown that if DDH in GT is easy, then DBDH is easy. That’s
a contradiction because we are told that DBDH is hard for this bilinear map.
Therefore, DDH in GT is actually hard.

3



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

6.

Corollary 1.5. The following problems are also hard: discrete log in G, CDH in GT

and discrete log in GT .

Proof sketch:

(a) For any group, DDH is hard =⇒ CDH is hard =⇒ discrete log is hard.

(b) For group GT , we know that DDH is hard, so CDH and discrete log are also hard.

(c) For group G, we know that CDH is hard, so discrete log is also hard.

4



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Bounded Collusion Identity-Based Encryption

In lecture 18, we used a bilinear map to construct IBE (identity-based encryption). Here, we
will use DDH and a random oracle H : Zq → Zq to construct a weaker version of IBE that is
secure if the attacker only receives a single skID.

A random oracle is a truly random function that all parties have query access to. In this
problem, H is sampled uniformly at random from all functions mapping Zq → Zq. Random
oracles are idealized objects, and they don’t exist in the real world. In practice, we replace
random oracles with sufficiently complex hash functions, such as SHA-256.

Let the IBE scheme Π = (Setup,KeyGen,Enc,Dec) be constructed as follows:

1. Setup(1n):

(a) Sample the parameters of a cyclic group (G, q, g)← G(1n). Let pp = (G, q, g).

(b) Sample a, b← Zq independently. Compute h0 = ga and h1 = gb.

(c) Output mpk = (pp, h0, h1) and msk = (pp, a, b).

2. KeyGen(msk, ID):

(a) Let ID ∈ Zq.

(b) Compute r = H(ID) and s = a · r + b mod q.

(c) Output skID = (ID, s).

3. Enc(mpk, ID,m):

(a) Let m ∈ G.

(b) Compute r = H(ID).

(c) Sample y ← Zq.

(d) Output ct = (gy, hy·r0 · h
y
1 ·m).

4. Dec(skID, ct): TBD

It is implied that all functions can make queries to H.

Questions:

1. Fill in Dec(skID, ct), and prove that any valid ciphertext will be decrypted correctly.

Solution

Dec(skID, ct):

(a) Parse ct as ct = (c0, c1).

(b) Compute r = H(ID) and s = a · r + b mod q.

(c) Compute and output m = c−s
0 · c1

5



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Any valid ciphertext will be decrypted correctly because:

Dec
[
skID,Enc(mpk, ID,m)

]
= c−s

0 · c1
= g−yar−yb · hyr0 · h

y
1 ·m

= g−yar−yb · gyar · gyb ·m
= m

2. Show that Π is not a CPA-secure IBE scheme.

Solution

(a) The adversary queries KeyGen(msk, ·) on two different ID’s: They obtain

(ID1, s1)← KeyGen(msk, ID1)

(ID2, s2)← KeyGen(msk, ID2)

(b) The adversary computes r1 = H(ID1) and r2 = H(ID2) and sets up the following
linear system: {

s1 = r1 · a+ b mod q
s2 = r2 · a+ b mod q

The unknown variables are (a, b). If r1 ̸= r2 (which occurs with probability 1− 1
q =

1− negl(n)), this system is full-rank.

(c) The adversary solves the system for (a, b).

(d) Now the adversary knows msk = (pp, a, b), so they can decrypt any ciphertext and
break CPA security.

It turns out that any adversary that breaks the CPA-security of this IBE scheme needs
to make at least 2 queries to KeyGen(msk, ·). This IBE scheme is CPA-secure against any
adversary that never makes more than 1 query to KeyGen(msk, ·).

6


