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1 Zero-Knowledge Protocol for Graph Isomorphism

Two graphs are isomorphic if it is possible to permute the vertices of one graph to obtain
the other graph.

Let G = (V, E) be a graph with n vertices: V = {1,...,n} = [n]. Let 7 : [n] — [n] be a
permutation of the vertices. We can define 7(G) to be the graph that results from permuting
G’s vertices according to .t

More formally, 7(G) = (V', E’) is a graph with vertex set V' =V and edge set

E' ={(u,v) eV xV: (Wﬁl(u),ﬂfl(v)) € E}

Definition 1.1 (Isomorphic Graphs). Two graphs Gy and G are isomorphic (notated
as Gy ~ G1) if they have the same number of vertices n, and there exists a permutation
7™ : [n] = [n] such that

Go =7 (G1)

Question: Give a zero-knowledge proof system for the language of isomorphic graphs £ =
{(Go,G1) : Gp ~ G1}. Prove that the scheme satisfies completeness, soundness, and zero-
knowledge.

Tt’s technically an abuse of notation to write 7(G) since m was defined to take a vertex as input, not a
graph, but we’ll do it anyways.
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1.1 Proof System Definitions

In this problem, the prover’s goal is to convince a verifier that a given pair of graphs (Go, G1)
are isomorphic. We will use the following terminology. The language

L ={(Go,G1): Go ~ G1}

is the set of all pairs of graphs that are isomorphic to each other. z := (G, G1) is called an
instance, and the prover’s job is convince a verifier that a given instance z is in the language
L.

One simple way to prove that Gg ~ (G is to provide a permutation 7* such that Gy =
7*(G1). Then a verifier can check whether the condition Gy = 7*(G1) is satisfied.

Let’s put this in more abstract terms. The witness w := 7* is a proof that x € L. Let
R(z,w) be the function that verifies the witness:

1, Gp=7"(G1)
R[(Gy,G1), 7] =
[(Go, G1), ) {(), otherwise
R outputs 1 if and only if w is a valid proof that = € L.

Completeness and Soundness

The goal of a zero-knowledge proof system is to convince the verifier that x € £ without
revealing any information about w to the verifier.

Syntax of the protocol: The prover takes inputs (1*,z,w), and the verifier takes inputs
(1)‘,51;). A € N is the security parameter. x is the instance that the prover will try to
prove belongs to £. In order for the proof to succeed, w should be a valid witness for x
(R(xz,w) = 1). After some interaction between the prover and verifier, the verifier outputs a
bit indicating whether they accept or reject the proof that x € L.

This protocol should have the following three properties: completeness, soundness, and
zero-knowledge. We’'ll define them below.

Let (P, V) be the honest prover and verifier, respectively, who follow the protocol as-
written. Let (P*,V*) be a dishonest prover and verifier, respectively, who may deviate
from the protocol.

Completeness says that a valid proof will be accepted with overwhelming probability.

Definition 1.2 (Completeness). The protocol satisfies completeness if when P(1*, x,w)
and V (1), x) interact and their inputs satisfy R(x,w) = 1, then the verifier will accept the
proof with probability > 1 — negl()\).

Soundness says that if = ¢ £, then no adversarial prover will be able to “trick” the verifier
into accepting the proof with greater than negligible probability.

Definition 1.3 (Soundness). The protocol satisfies soundness if for any x ¢ L and any
adversarial prover P*, when P* and V(1*,z) interact, then the verifier will accept the proof
with probability < negl(\).
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Zero-Knowledge

Zero-knowledge says that an adversarial verifier cannot learn anything about w during the
protocol because the information available to the verifier (their view) can be simulated with-
out knowledge of w.

To make this definition more formal, let’s establish some notation.

e When V*(1*, z) interacts with P(1*, 2, w), let the verifier’s view, view(V*;1*, 2, w), be
a list of the verifier’s inputs (1}, z), any messages sent to or from the verifier during
the protocol, and anything output by the verifier.

e Let the simulator Sim be an algorithm that tries to simulate the verifier’s view given
only (1*,z). Note that Sim is not given w.

Next, Sim is given black-box access to V* (notated as Sim""). This means Sim can run
V* on any inputs of its choice and rewind V* to any step, but it cannot modify the
internal workings of V*.

Finally, the expected value of Sim’s runtime should be polynomial in the size of Sim’s
inputs.

o Let the distinguisher D be an algorithm that outputs a bit and tries to distinguish the
verifier’s real view from the one produced by the simulator.

Informally, the protocol satisfies zero-knowledge if whenever R(z,w) = 1, the distin-
guisher cannot distinguish the real view from the simulated view.
Here is a more-formal definition:

Definition 1.4 (Black-Box Zero-Knowledge). The protocol satisfies (black-boz) zero-knowledge
if there exists a simulator Sim such that for any adversarial V* and any inputs (1), z,w) that
satisfy R(xz,w) =1 and any distinguisher D:

Pr [D(view(V*; 1’\,x,w)) — 1] —Pr [D(Simv*(lk,a:)) — 1} < negl(\)

Finally, honest-verifier zero-knowledge is a weaker form of security in which zero-
knowledge only holds when the verifier follows the protocol honestly.

Definition 1.5 (Black-Box Honest-Verifier Zero-Knowledge). The protocol satisfies (black-
box) honest-verifier zero-knowledge if there exists a simulator Sim such that for the honest
verifier V. and any inputs (1*, z,w) that satisfy R(x,w) = 1 and any distinguisher D:

Pr {D(view(V; 1 2, w)) — 1} —Pr [D(Simv(l’\,a:)) — 1} < negl()\)




CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Polynomial Commitments

Question: Prove that the KZG commitment scheme is not hiding.

2.1 The KZG Commitment Scheme
1. Gen(1™):
(a) Let d be polynomial in n.
(b) Set up a bilinear map by sampling
pp = (Ga GT7 q,9, 6) A g(ln)
(c) Sample 7« Zj.
(d) Finally, output
params = (pp7 gT7 g(T2)7 R 7g(Td)>
2. Commit(params, f):

(a) Let f be a polynomial € Z,[X] of degree < d:

d
f(X) =D o X'
i=0

where every o; € Zj.
(b) Compute and output the commitment:

d

_ ()"
comy H} (g )
o)

(c) Open:

i. Let z € Zy be an input on which to open the commitment, and let s = f(2).
Now the sender will prove that s = f(z).

ii. The sender computes the polynomial:

f(X)—s
t(X) =
(X) ==
and a commitment com; = Commit(params,¢). Then they send (z,s,T’) to the

receiver.
iii. The receiver accepts the opening if and only if:

e(comy - g~°, g) = e(coms, 9" - g77) (2.1)
Note that equation 2.1 is satisfied if and only if:

e(g’ 7 g) = e(g" D, g77)
f(r) —s=t(r) (1 —2)



