
CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 3 (Feb 5)

1. Pseudorandom Generators

Let F,G : {0, 1}n → {0, 1}3n be pseudorandom generators. For each of the functions below,
prove or disprove that H is necessarily a pseudorandom generator.

(a) H(s0s1 . . . sn−1) := G(sn−1sn−2 . . . s0).

(b) H(s) := G(s)0,...,2n−1 (i.e., the first 2n bits of G(s)).

(c) H(s) = G(s)∥F (s).

Solution (a) H is a PRG. Suppose for the purpose of contradiction that H is not a
PRG, then there exists a PPT A such that |Pr[A(U3n) = 1] − Pr[A(H(Un)) = 1]| is non-
negligible. Construct a PPT B to break G as follows: on input t ∈ {0, 1}3n, output A(t).
Note that Pr[B(U3n) = 1] = Pr[A(U3n) = 1], Pr[B(G(Un)) = 1] = Pr[A(H(Un)) = 1], hence
|Pr[B(U3n) = 1] − Pr[B(G(Un)) = 1]| = |Pr[A(U3n) = 1] − Pr[A(H(Un)) = 1]| is non-
negligible, B breaks the pseudorandomness of G, contradiction.

(b) H is a PRG. Suppose for the purpose of contradiction that H is not a PRG, then
there exists a PPT A such that |Pr[A(U2n) = 1] − Pr[A(H(Un)) = 1]| is non-negligible.
Construct a PPT B to break G as follows: on input t ∈ {0, 1}3n, output A(t0,1,...,2n−1). Note
that Pr[B(U3n) = 1] = Pr[A(U2n) = 1], Pr[B(G(Un)) = 1] = Pr[A(H(Un)) = 1], hence
|Pr[B(U3n) = 1] − Pr[B(G(Un)) = 1]| = |Pr[A(U2n) = 1] − Pr[A(H(Un)) = 1]| is non-
negligible, B breaks the pseudorandomness of G, contradiction.

(c) H is not a PRG. If G = F then the first and the second half will be the same.

2. Equivalence of Definitions

Consider the following variant of CPA secure definition.

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a tuple of messages
(m0,1, . . . ,m0,r) and (m1,1, . . . ,m1,r) where m0,i and m1,i have the same length.

3. A uniform bit b ∈ {0, 1} is chosen and for each i ∈ [r], ci is generated as Enck(mb,i) and
the tuple of ciphertexts (c1, . . . , cr) is given to the adversary.

4. The adversary A continues to have oracle access to Enck(·) and outputs a bit b′.

5. The output of the experiment is defined to be 1 if and only if b = b′.

We say that an encryption scheme to be strong CPA secure if for every A there is a negligible
function ν such that:

Pr[PrivKS−CPA
A,Π (n) = 1] ≤ 1/2 + ν(n)

Show that the strong CPA security is equivalent to CPA security.

1

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Solution Hint: A common technique in cryptography is called hybrid argument. The basic
idea is the following: If A can distinguish two distributions D1 and D2 with non-negligible
probability, then we can construct a sequence of distributions H0, H1, . . . ,Hn where H0 = D1

and Hn = D2, and n is polynomial in the security parameter. By the properties of negligible
functions, A must be able to distinguish at least two neighboring hybrids Hi and Hi+1 with
non-negligible probability.

In order to show the equivalence, we need to show that strong CPA security implies the
standard CPA security and vice versa. Let us first start with the easy direction where we
first show that strong CPA security implies CPA security.

Strong CPA ⇒ CPA security. Notice that the only difference between these two defini-
tions is that in the strong CPA security, A has the option of outputting two tuples of messages
instead of a pair of messages. Thus, if we set r = 1 in the above definition, it is equivalent
to standard CPA security. This shows that strong CPA security implies the standard CPA
security.

CPA Security ⇒ Strong CPA security. The interesting direction is the other one where
we show that strong CPA security is implied by the weaker version.

Consider an encryption scheme (Gen,Enc,Dec) which is secure as per the standard CPA
security definition. We will show that it is secure as per the stronger CPA security definition.
To show this, we will use a hybrid argument. Specifically, we will define a sequence of hybrids
starting with the hybrid which corresponds to the strong CPA experiment with the bit b = 0
and end with a hybrid which corresponds to the strong CPA experiment with the bit b = 1.
We will show that each of the intermediate hybrids are indistinguishable from the standard
CPA security of the encryption scheme.

Hyb0 : This corresponds to the strong CPA experiment where the bit b = 0. More formally,
for any adversary A,

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a tuple of messages
(m0,1, . . . ,m0,r) and (m1,1, . . . ,m1,r) where m0,i and m1,i have the same length.

3. For each i ∈ [r], ci is generated as Enck(m0,i) and the tuple of ciphertexts (c1, . . . , cr)
is given to the adversary.

4. The adversary A continues to have oracle access to Enck(·) and outputs a bit b′.

5. The output of the experiment is defined to be b′.

Hyb1 : This hybrid is exactly same as the previous hybrid except that for i = 1, we change
c1 from encrypting m0,1 to encrypting m1,1. More formally,

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a tuple of messages
(m0,1, . . . ,m0,r) and (m1,1, . . . ,m1,r) where m0,i and m1,i have the same length.

2

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3. Generate c1 as Enck(m1,1). For each i ∈ [r] \ {1}, ci is generated as Enck(m0,i) and the

tuple of ciphertexts (c1, . . . , cr) is given to the adversary.

4. The adversary A continues to have oracle access to Enck(·) and outputs a bit b′.

5. The output of the experiment is defined to be b′.

More generally, we define Hybj for any j ∈ [r] is defined as follows.

Hybj :

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a tuple of messages
(m0,1, . . . ,m0,r) and (m1,1, . . . ,m1,r) where m0,i and m1,i have the same length.

3. For each i ≤ j, generate ci as Enck(m1,i). For each i ∈ [r] \ [j], ci is generated as Enck(m0,i)

and the tuple of ciphertexts (c1, . . . , cr) is given to the adversary.

4. The adversary A continues to have oracle access to Enck(·) and outputs a bit b′.

5. The output of the experiment is defined to be b′.

We now show that for any j ∈ [r], Hybj is computationally indistinguishable to Hybj−1.

Claim 0.1. Assume that (Gen,Enc,Dec) satisfies the standard CPA security definition. Then,
for any adversary A and j ∈ [r], there exists a negligible function ν(·)

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1]| ≤ ν(n)

Proof. Assume for the sake of contradiction that there exists an adversary A and j ∈ [r] such
for every negligible function ν(·),

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1]| ≥ ν(n)

We will now use such an adversary A and the corresponding j, to construct an adversary B
against the standard CPA security definition of (Gen,Enc,Dec). We now give the description
of B.

Description of B.

1. B on input 1n, starts running A on input 1n.

2. Phase-1 oracle queries. For every query that A makes to the the encryption oracle
in phase-1, B answers them using its own encryption oracle. Specifically, for every
message m that A queries to Enck(·) oracle, B submits m as the message to its Enck(·)
oracle and obtains the response. It forwards this response to A.

3

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3. Challenge Messages. A now submits a tuple of r messages, (m0,1, . . . ,m0,r) and
(m1,1, . . . ,m1,r). To generate the challenge ciphertexts, (c1, . . . , cr), B does the follow-
ing. For each i < j, B submits m1,i to its Enck(·) oracle and obtains the ciphertexts
(c1, . . . , cj−1). For each i ≥ j + 1, it submits m0,i to its Enck(·) oracle and obtains
the ciphertexts (cj+1, . . . , cr). Finally, it submits m0,j and m1,j as its challenge mes-
sages and obtains a ciphertext c∗. It gives the tuple (c1, . . . , cj−1, c

∗, cj+1, . . . , cr) as the
challenge ciphertext.

4. Phase-2 oracle queries. For every query Amakes to the encryption oracle, B answers
them exactly as in phase-1.

5. A finally outputs a bit b′ and B outputs this bit.

Now, note that if c∗ is an encryption of the messagem0,j , then distribution of the challenge
ciphertexts given to A is identically distributed to Hybj−1. On the other hand, if c∗ was an
encryption of the message m1,j , then the distribution of the challenge ciphertexts given to A
is identically distributed to Hybj . Thus, if for every negligible function,

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1]| ≥ ν(n)

then, for every negligible function ν(·)

Pr[PrivKcpa
B,Π = 1] ≥ 1/2 + ν(n)

and this contradicts the standard CPA security of Π = (Gen,Enc,Dec).
Now,

|Pr[Hyb0 outputs 1]− Pr[Hybr outputs 1]| ≤
∑
j∈[r]

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1]|

≤ r · ν(n) (from Claim 0.1)

= ν ′(n)

Observe that Hybr is identically distributed to the strong CPA security experiment where
the challenge bit is set to 1. Thus, we showed that (Gen,Enc,Dec) satisfies the stronger CPA
security definition.

4

