
UC Berkeley — CS171 : Undergraduate Cryptography Midterm II
Prof. Sanjam Garg March 20, 2024

Midterm II

Name:

SID:

• You may consult at most 1 double-sided sheet of handwritten notes. Apart from
that, you may not look at books, notes, etc. Calculators, phones, computers, and
other electronic devices are NOT permitted for looking up content. However,
you may use an electronic device such as a tablet for writing your answers.

• DSP Students: If you are allowed 1.5× (resp. 2×) the regular exam duration,
then you must submit your exam within 120 = 80 ∗ 1.5 (resp. 160 = 80 ∗ 2) mins.

• The instructors will not be answering questions during the exam. If you feel that
something is unclear, please write a note in your answer.

1 Multiple Choice (20 points)

In the multiple choice section, no explanations are needed for your answers. No points
are deducted for wrong answers. Please mark your answers clearly.

1. Public-Key Encryption: For each of the following statements, indicate whether it is true
or false.

(a) Encrypting a message using PKE (public-key encryption) is usually slower in practice
than encrypting the message using SKE (secret-key encryption).

True

False

Solution: True. This is why hybrid encryption is desirable. See Katz & Lindell, 3rd
Edition, Section 12.3 for more information.

(b) EAV security is equivalent to CPA security for PKE schemes.
True

False

Solution: True. See lecture 14, slide 14.

(c) CPA-secure PKE can be constructed from key-exchange protocols and vice versa: key-
exchange protocols can be constructed from CPA-secure PKE.

True

False

Solution: True. Discussion 8, question 1 shows that key-exchange implies PKE. The
midterm review session, slides 48-50, shows that PKE implies key-exchange.

(d) In hybrid encryption, SKE is used to encrypt a shared public key pk for a PKE scheme.
True

False

Solution: False. In hybrid encryption, PKE is used to encrypt a shared secret key k
for an SKE scheme.

2. Hard-Concentrate Predicates: Let f : {0, 1}n → {0, 1}n be a function that has a hard-
concentrate predicate h : {0, 1}n → {0, 1}. Also, let f(x)[1,n−1] be f(x) without the nth bit,
and let f(x)n be the nth bit of f(x).

Select all of the functions below for which h is (necessarily) a hard-concentrate predicate.

g1(x) = f(x)[1,n−1]

g2(x) = f(x)||
(
h(x)⊕ 1

)
g3(x) = f(x)n ⊕ h(x)

g4(x) = f(x)[1,n−1]||
(
f(x)n ⊕ h(x)

)
Solution: h is necessarily a hard-concentrate predicate for g1, but not for g2, g3, or g4.

For g1: We know that given f(x), no PPT adversary can guess h(x) with probability 1
2 +

non-negl(n). Therefore if the adversary is given g1(x) = f(x)[1,n−1], which is less information

than f(x), it is also hard for them to guess h(x) with probability 1
2 + non-negl(n).

2

Name:

For g2: Given g2(x), it is easy for an adversary to learn h(x). They can take the last bit
g2(x)n+1 = h(x)⊕ 1 and compute g2(x)n+1 ⊕ 1 = h(x).

For g3 and g4: It’s possible that f(x)n = 0 for all inputs x. In this case g3(x) = h(x), and
g4(x)n = h(x). So given g3(x) or g4(x), it’s easy for an adversary to learn h(x).

3. Constructing A from B: For each of the following statements, indicate whether it is true
or false.

(a) PRGs can be used to construct PRFs, but PRFs are not sufficient to construct PRGs.
True

False

Solution: False. PRGs can be used to construct PRFs, and PRFs can be used to
construct PRGs.

Lecture 12, slides 22-26, shows how to use a PRG to construct a PRF. Discussion 8,
question 2.3 shows how to use a PRP to construct a PRG, and by the same argument,
it’s possible to use a (generic) PRF to construct a PRG.

(b) Any OWF f : {0, 1}n → {0, 1}2n is also a PRG.
True

False

Solution: False. Consider a OWF whose first bit is always 0. Such a OWF f can be
constructed from any OWF g : {0, 1}n → {0, 1}n−1. But f ’s output can be distinguished
from random with advantage 1

2 , so f is not a PRG.

(c) Any PRG g : {0, 1}n → {0, 1}2n is also a OWF.
True

False

Solution: True. Essentially the same claim was proven in Homework 7, question 1.

(d) Any length-preserving PRP (pseudorandom permutation) is also a PRF.
True

False

Solution: True. This is stated in Katz & Lindell, 3rd Edition, Proposition 3.26.

4. El Gamal Encryption: In the El Gamal encryption scheme, let the public key be pk =
(G, p, g, ga), where G is a cyclic group, p is the size of the group, g is a generator of the group,
and a ∈ Zp is part of the secret key.

Which one of the following algorithms correctly describes the process to encrypt a message
m ∈ G?

Sample k ← Zp. Compute c1 = gk and c2 = ga · gk ·m. Output (c1, c2).

Sample k ← Zp. Compute c1 = (ga)k and c2 = gk +m. Output (c1, c2).

Sample k ← Zp. Compute c1 = gk and c2 = (ga)k ·m. Output (c1, c2).

Sample k ← Zp. Compute c1 = (ga)k and c2 = gk ·m. Output (c1, c2).

Solution: Option C

3

2 One-Way Functions (15 points)

Question: Let f : {0, 1}n → {0, 1}n be a OWF. Use f to construct another OWF g such that
g : {0, 1}n → {0, 1}n and g(0n) = 0n. Your answer should describe a construction of g and prove
that g is a OWF.

Give a construction of g.

Solution:

Let g(x) =

{
0n if x = 0n,

f(x) otherwise

Note that g(x) satisfies g(0n) = 0n for every n as required. Also note that g is efficiently computable:
it runs in polynomial time in n.

4

Name:

Prove that the function g constructed above is a secure OWF.

Solution:

1. Overview: Assume for sake of contradiction that g is not one-way. This implies the existence
of the following PPT algorithm A that wins the OWF game for g – InvertA,g(n) – with
non-negligible probability. In math notation, that is:

Pr[InvertA,g(n) = 1] ≥ nonnegl1(n).

Then we will show that A can actually break the OWF security of f as well:

Pr[InvertA,f (n) = 1] ≥ nonnegl2(n).

This is a contradiction because f is a secure OWF. Therefore, our original assumption was
wrong, and in fact, g is a secure OWF.

2. The first key insight is that if we play InvertA,g(n) and condition on the event that the
challenger does not sample x = 0n, then A’s success probability changes by a negligible
amount. This is because Pr[x = 0n] = 1

2n .

Here’s more detail:

Pr[InvertA,g(n) = 1] = Pr[InvertA,g(n) = 1|x ̸= 0n] · Pr[x ̸= 0n] + Pr[InvertA,g(n) = 1|x = 0n] · Pr[x = 0n]

≤ Pr[InvertA,g(n) = 1|x ̸= 0n] + Pr[x = 0n]

= Pr[InvertA,g(n) = 1|x ̸= 0n] +
1

2n

non-negl1(n)−
1

2n
≤ Pr[InvertA,g(n) = 1|x ̸= 0n]

3. The second key insight is that if we condition on the event that x ̸= 0n, then the OWF games
for f and g are the same. This implies:

Pr[InvertA,f (n) = 1|x ̸= 0n] = Pr[InvertA,g(n) = 1|x ̸= 0n]

4. Now we will put these ideas together to show that Pr[InvertA,f (n) = 1] ≥ non-negl2(n).

Pr[InvertA,f (n) = 1] = Pr[InvertA,f (n) = 1|x ̸= 0n] · Pr[x ̸= 0n] + Pr[InvertA,f (n) = 1|x = 0n] · Pr[x = 0n]

≥ Pr[InvertA,f (n) = 1|x ̸= 0n] · Pr[x ̸= 0n]

= Pr[InvertA,f (n) = 1|x ̸= 0n] ·
(
1− 1

2n

)
= Pr[InvertA,g(n) = 1|x ̸= 0n] ·

(
1− 1

2n

)
≥

(
nonnegl1(n)−

1

2n

)
·
(
1− 1

2n

)
= nonnegl2(n).

5. Thus, we have shown that if g is not one-way, then f is not one-way either. The contrapositive
is also true: if f is one-way, then g is one-way.

5

3 Domain Extension with CRHFs (25 Points)

We will examine a simple way to extend the domain of a MAC by first hashing the message with
a CRHF.

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function.

Let H = (Gen, H) be a collision-resistant hash function with key space {0, 1}n and input space X ,
which may be very large. For every key s← Gen(1n), s ∈ {0, 1}n and Hs : X → {0, 1}n.

Let G : {0, 1}2n ×X → {0, 1}n be defined as follows:

G((k, s), x) = F
(
k,Hs(x)

)
3.1 Pseudorandom Function (15 Points)

Question: Prove that G is a pseudorandom function.

You may wish to follow the template provided below.

Let’s define several hybrids. For a given adversary A:

1. Let Hyb0(A, n) be the PRF security game in which the adversary A gets query access to G.
In particular:

(a) The PRF challenger samples k ← {0, 1}n and s← Gen(1n).

(b) The adversary A gets query access to the following function:

G(·) = F (k,Hs(·))

(c) The adversary outputs a bit b, which is the output of the hybrid.

2. Let Hyb1(A, n) be the same as Hyb0(A, n), except F (k, ·) is replaced with a uniformly random
function R1 : {0, 1}n → {0, 1}n:

(a) The PRF challenger samples a function R1 uniformly at random from the set of all
functions mapping {0, 1}n → {0, 1}n. They also sample s← Gen(1n).

(b) The adversary A gets query access to the following function:

R1(H
s(·))

(c) The adversary outputs a bit b, which is the output of the hybrid.

6

Name:

3. Let Hyb2(A, n) be the same as Hyb0(A, n) except F (k,Hs(·)) is replaced with a uniformly
random function R2 : X → {0, 1}n:

(a) The PRF challenger samples a function R2 uniformly at random from the set of all
functions mapping X → {0, 1}n.

(b) The adversary A gets query access to:

R2(·)

(c) The adversary outputs a bit b, which is the output of the hybrid.

Lemma 3.1 For any PPT adversary A,
∣∣Pr[Hyb0(A, n)→ 1]− Pr[Hyb1(A, n)→ 1]

∣∣ ≤ negl(n).

Proof:

Solution: This follows from the PRF security of F .

1. Overview: Assume toward contradiction that there exists a PPT adversary A such that∣∣Pr[Hyb0(A, n) → 1] − Pr[Hyb1(A, n) → 1]
∣∣ is non-negl(n). Then we will use A to construct

an adversary B that breaks the PRF security of F .

2. B will play in the PRF security game. BF (k,·) will end up simulating Hyb0(A, n), and BR1(·)

will end up simulating Hyb1(A, n).
Construction of B:

(a) The PRF challenger either samples k ← {0, 1}n and gives B query access to F (k, ·), or
they sample R1 : {0, 1}n → {0, 1}n uniformly at random and give B query access to
R1(·).

(b) B samples s← Gen(1n).

(c) B runs A internally. Whenever A produces a query x, B computes y = Hs(x) and
forwards y as a query to its PRF challenger. B forwards whatever response it gets from
its challenger to A.

(d) Finally, A outputs a bit b, which B outputs as well.

3. Analysis: If B was given query access to F (k, ·), then B ended up simulating Hyb0(A, n).
Therefore:

Pr[BF (k,·) → 1] = Pr[Hyb0(A, n)→ 1]

If B was given query access to R1(·), then B ended up simulating Hyb1(A, n). Therefore:

Pr[BR1(·) → 1] = Pr[Hyb1(A, n)→ 1]

In summary:∣∣∣Pr[BF (k,·) → 1]− Pr[BR1(·) → 1]
∣∣∣ = ∣∣∣Pr[Hyb0(A, n)→ 1]− Pr[Hyb1(A, n)→ 1]

∣∣∣
7

4. If
∣∣Pr[Hyb0(A, n)→ 1]−Pr[Hyb1(A, n)→ 1]

∣∣ = non-negl(n), then B breaks the PRF security
of F . This is a contradiction because F is a secure PRF, so our initial assumption was wrong.
In fact, for any PPT adversary A,∣∣∣Pr[Hyb0(A, n)→ 1]− Pr[Hyb1(A, n)→ 1]

∣∣∣ ≤ negl(n)

Lemma 3.2 For any PPT adversary A,
∣∣Pr[Hyb1(A, n)→ 1]− Pr[Hyb2(A, n)→ 1]

∣∣ ≤ negl(n).

Proof:

Solution: Note: The text in gray is included to clarify our argument, but it goes beyond the
level of detail expected from students on an exam.

1. Intuition: This follows from the CRHF security of H. In Hyb1, if A never queries its oracle
on two inputs that collide in Hs, then each distinct query submitted by A will receive in
response a random string sampled independently of the other responses. In this case, A cannot
distinguish Hyb1 and Hyb2 because because the distribution of responses will be identical in
both hybrids.

The flip side is that if A can distinguish Hyb1 and Hyb2, then we can use A to find collisions
in Hs by recording the queries that A makes and checking if any of them collide.

2. Let A be a PPT adversary for Hyb1 and Hyb2. Next, we will use A to construct an adversary
B that tries to find collisions in Hs.

Construction of B:

(a) The CRHF challenger samples s← Gen(1n) and gives s to B.
(b) B will simulate Hyb1 with A and keep a database of the queries from A and responses

from B. The database contains entries of the form (x, y, ry), where x ∈ X , y = Hs(x),
and ry ∈ {0, 1}n serves as the response R1(y).

(c) B runs A internally. Whenever A outputs a query x to the R1(H
s(·)) oracle:

i. B computes y = Hs(x) and searches for y in the database.

ii. A. Case 1: This y-value does not appear in any entries from the database. Then B
samples a random string ry ← {0, 1}n.

B. Case 2: This y-value does appear in a database entry. The entry has the form
(x′, y, ry), where Hs(x′) = y. Then B uses the value of ry given in this entry.

iii. B sends ry to A.
iv. B adds (x, y, ry) to the database if it’s not there already.

(d) When A finishes running, B searches the database for a collision in Hs. It looks for two
values x and x′ such that x ̸= x′, and Hs(x) = Hs(x′). If B finds such a pair, it ouputs
(x, x′). Otherwise B outputs ⊥.

8

Name:

3. Let C be the event that A’s queries include a collision in Hs.1 Since H is collision resistant,

Pr[C] = Pr[B finds a collision in Hs] = negl(n)

4. Next, we’ll show that

Pr[Hyb1(A, n)→ 1|¬C] = Pr[Hyb2(A, n)→ 1|¬C]

In Hyb1, if ¬C occurs, then every distinct query made by A will receive in response a uniformly
random string that is independent of all the other inputs that A queried on. This is the same
distribution of responses that A receives in Hyb2 if ¬C occurs.

5. We will finish with some algebra:

Let α = Pr[Hyb1(A, n)→ 1]

β = Pr[Hyb2(A, n)→ 1]

γ = Pr[Hyb1(A, n)→ 1|¬C] = Pr[Hyb2(A, n)→ 1|¬C]

Claim 3.1 |α− γ| ≤ negl(n).

Proof:

α = Pr[Hyb1(A, n)→ 1] = Pr[Hyb1(A, n)→ 1 AND ¬C]︸ ︷︷ ︸
=Pr[¬C]·Pr[Hyb1(A,n)→1|¬C]

+Pr[Hyb1(A, n)→ 1 AND C]︸ ︷︷ ︸
≤Pr[C]

≤ Pr[¬C] · Pr[Hyb1(A, n)→ 1|¬C] + Pr[C]

≤ Pr[Hyb1(A, n)→ 1|¬C] + Pr[C]

= γ + negl(n)

|α− γ| ≤ negl(n)

6. By a similar argument, we can show that |β − γ| ≤ negl(n).

7. Next, we use the triangle inequality to conclude that
∣∣∣Pr [Hyb1(A, n)→ 1

]
−Pr

[
Hyb2(A, n)→

1
]∣∣∣ is negligible:∣∣∣Pr [Hyb1(A, n)→ 1

]
− Pr

[
Hyb2(A, n)→ 1

]∣∣∣ = |α− β|

= |(α− γ)− (β − γ)|
≤ |α− γ|+ |β − γ|
≤ 2 · negl(n)

1We can define C for Hyb2 as well as for Hyb1. In Hyb2, we can imagine that the challenger samples s← Gen(1n)
at the beginning but doesn’t use it. Then at the end of the hybrid, we can check whether any of A’s queries include
a collision in Hs to decide whether C occurred.

9

Finish the proof.

Solution: In summary, for any PPT adversaryA, there exist negligible functions (negl1, negl2, negl3)
such that:∣∣Pr[Hyb0(A, n)→ 1]− Pr[Hyb2(A, n)→ 1]

∣∣ ≤ ∣∣Pr[Hyb0(A, n)→ 1]− Pr[Hyb1(A, n)→ 1]
∣∣

+
∣∣Pr[Hyb1(A, n)→ 1]− Pr[Hyb2(A, n)→ 1]

∣∣
= negl1(n) + negl2(n) = negl3(n)

Since Hyb0(A, n) and Hyb2(A, n) are the two hybrids that the PRF adversary for G is asked to
distinguish, this implies that G is a secure PRF.

10

Name:

3.2 Message Authentication Code (10 points)

Question: Use G (defined above) to construct a secure MAC Π = (GenΠ,MacΠ,VerifyΠ) that
takes messages m ∈ X .

You may use the template provided below. You do not need to prove that your construction is
secure.

1. GenΠ(1
n): Sample k ← {0, 1}n and s← Gen(1n), and output kΠ = (k, s).

2. MacΠ(kΠ,m): Output
t = G(kΠ,m) = F (k,Hs(m))

3. VerifyΠ(kΠ,m, t): If t = MacΠ(kΠ,m), then return 1. Otherwise, return 0.

The proof that Π is a secure MAC is essentially the same as the proof of theorem 4.6 in Katz &
Lindell, 3rd Edition or the proof in lecture 9, slides 8-9.

11

4 Public-Key Encryption (20 points)

The composition of two PKE schemes with independent keys is CPA-secure as long as at least one
of the schemes is CPA-secure. We will show most of the proof of this claim.

Question: Follow the outline given below and fill in any blanks.

Let us be given two public-key encryption schemes Π1 = (Gen1,Enc1,Dec1) and Π2 = (Gen2,Enc2,Dec2).
Let the ciphertext space of Enc2 be the same as the message space of Enc1. Also, one of Π1 or Π2

is CPA secure, and the other one is not, but we don’t know which one is secure.

Define the composed scheme Π = (Gen,Enc,Dec) as follows. Fill in the algorithm for Dec so
that Π satisfies correctness.

• Gen(1n): Run Gen1(1
n)→ (pk1, sk1) and Gen2(1

n)→ (pk2, sk2). Return ((pk1, pk2), (sk1, sk2)).

• Enc((pk1, pk2),m): Return c = Enc1(pk1,Enc2(pk2,m)).

• Dec((sk1, sk2), c): Return m′ = Dec2(sk2,Dec1(sk1, c))

Theorem 4.1 If Π1 is CPA-secure or Π2 is CPA-secure, then Π is CPA-secure.

Proof:

1. Overview: To show that Π is CPA-secure, we will give a proof by contradiction. Suppose
that there is a PPT adversary A that wins the CPA security game for Π with non-negligible
probability. Then we will construct an adversary B1 for the CPA game for Π1 and an adversary
B2 for the CPA game for Π2. Both B1 and B2 will succeed with non-negligible probability,
which breaks CPA security for both Π1 and Π2. This contradicts the fact that at least one
of them was CPA-secure.

12

Name:

2. Use A to construct an adversary B1 for the CPA game for Π1. B1 should win the
CPA game for Π1 with the same probability that A wins the CPA game for Π.
Do not include the proof that your adversary works, just construct the adversary.

Solution: Consider the CPA game for Π1 with a challenger and an adversary B1 that we
will construct:

13

(a) The challenger samples (sk1, pk1)← Gen1(1
n) and sends pk1 to B1.

(b) B1 samples (sk2, pk2)← Gen2(1
n) and sends (pk1, pk2) to A.

(c) B1 receives the challenge messages (m0,m1) from A, and then computes

(m′
0,m

′
1) = (Enc2(pk2,m0),Enc2(pk2,m1))

Then B1 sends (m′
0,m

′
1) as its challenge messages to the challenger.

(d) The challenger samples a bit b and returns Enc1(pk1,m
′
b) to B1 who sends the same

challenge ciphertext unchanged to A.
(e) A returns a guess b′ and B1 outputs the same bit as its guess.

Note that by construction, A gets the correct input distribution of the public key as well as
the challenge ciphertext, since Enc1(pk1,m

′
b) = Enc1(pk1,Enc2(pk2,mb)). Hence, the success

probability of A in the CPA game for Π is the same as the success probability of B1 in the
CPA game for Π1.

14

Name:

3. Use A to construct an adversary B2 for the CPA game for Π2. B2 should win the
CPA game for Π2 with the same probability that A wins the CPA game for Π.
Do not include the proof that your adversary works, just construct the adversary.

Solution: Consider the CPA game for Π2 with a challenger and an adversary B2 that we
will construct:

15

(a) The challenger samples (sk2, pk2)← Gen2(1
n) and sends pk2 to B2.

(b) B2 samples (sk1, pk1)← Gen1(1
n) and sends (pk1, pk2) to A.

(c) B2 gets the challenge messages (m0,m1) from A, and sends them as its own challenge
messages to the challenger.

(d) The challenger samples a bit b and returns cb = Enc2(pk2,mb) to B2 who computes
Enc1(pk1, cb) and sends the modified ciphertext to A.

(e) A returns a guess b′ and B2 outputs the same bit as its guess.

Note that by construction, A gets the correct input distribution of the public key as well as
the challenge ciphertext, since Enc1(pk1, cb) = Enc1(pk1,Enc2(pk2,mb)). Hence, the success
probability of A in the CPA game for Π is the same as the success probability of B2 in the
CPA game for Π2.

16

