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Final

Name:

SID:

e Not all parts of a problem are weighted equally. Before you answer any question, read the
problem carefully. Be precise and concise in your answers.

e You may consult at most 10 sheets of notes. Apart from that, you may not look at books,
notes, etc. Calculators, phones, computers, and other electronic devices are NOT permitted
for looking up content. However, you may use an electronic device such as a tablet for writing
your answers.

e You have 170 minutes: there are 5 questions on this exam worth a total of 100 points.

e You are allocated 180 minutes and the extra 10 minutes are provided for the submission of the
exam on Gradescope. You must submit/upload the exam on time. Note that late submissions
will not be accepted.

e DSP Students must submit the exam in time as per your accommodation. Thus, if you
are allowed 1.5x (resp., 2x) the exam time then you must submit it within 170 % 1.5 + 10
(resp., 170 * 2 4+ 10) mins, i.e. 265 (resp., 350) mins. Your allotted time has already
been adjusted on Gradescope, and you will not need to email the final to the
instructors. Please submit on Gradescope.

e The exam must be submitted before 8 AM PT on May 12th, 2021. No exams later than this
time will be accepted regardless of when you start the test.

e We will not be answering questions during the exam. If you feel that something is unclear
please write a note in your answer.



1 Fill in the blanks (10 Points)

Please write the term that each sentence is describing. Each is worth 1 point.

(1) A function from natural numbers to non-negative real numbers that is asymptotically smaller

than 1/z¢ for any positive integer c.

(2) A method of obtaining public-key encryption at the asymptotic cost of private-key encryption.

(3) An attack model where the adversary can obtain decryptions of ciphertexts of its own choice.

(4) A two-party protocol to generate a shared secret key that can’t

be guessed by an eavesdropper.

(5) An encryption scheme that allows for the following: given a ciphertext ¢ encrypting a message

m and a function f, compute a ciphertext encrypting f(m).

(6) A proof technique used to show that two distributions are computationally indistinguishable

(i.e., Doy ~ D1) by constructing a sequence of polynomially many distributions Hg, H1, ..., Hn
where Hy = Dy and H,, = Dy and showing H;_1 ~ H; for all i € [n].

(7) A bijective function that can be computed efficiently on every input, but cannot be inverted in

polynomial time given the image of a random input.

(8) DES and AES are examples of

(9) For a cyclic group G of order ¢ and with generator g, the assumption that it is computationally

hard to find ¢® given (g, g%, ¢*), where a, b & Zy.

(10) An example of a perfectly secure encryption scheme.




Name:

2 True/False (20 points)

Bubble in the right answer. No explanation needed. +2 points for correct answer and 0 points for
wrong answers/unanswered questions! This part will be graded automatically. Please mark
your answer clearly.

1. It is typically a good idea to hide the implementation details of a public-key encryption
scheme.

(O True

(O False

2. We can construct a perfectly secure encryption scheme with messages that are double the
length of keys; e.g. | M| = |K|?, where |K| and | M| are the key and message spaces respec-
tively.

O True

(O False

3. If f is PRF, then G(s) = s||fs(1)]|...||fs(n) (for n > 0) must be a PRG.
O True

(O False

4. If f, g are PRGs then g(f(-)) must be a PRG.
O True

(O False

5. The “authenticate then encrypt” paradigm results in a secure authenticated encryption
scheme.

O True

(O False



10.

. CPA-secure public-key encryption for one-bit messages implies CPA-secure public-key en-

cryption for n-bit messages (for n > 2).
(O True

(O False

We can construct a collision resistant hash function assuming the hardness of the LWE prob-
lem.

(O True

O False

. It is reasonable to assume that the DDH problem is hard in groups with an efficient pairing

function.

(O True

(O False

. Identity-based encryption implies CCA2 secure public-key encryption.

O True

(O False

A deterministic unforgeable MAC is always strongly unforgeable.

(O True

(O False



Name:

3 One-Way Functions (20 points)

1. Show that the existence of a non-interactive perfectly binding bit commitment scheme implies
a one-way function (10 points).

Recall that a non-interactive perfectly binding bit commitment scheme Com is an algorithm
that takes in a bit b € {0,1} and random coins r € {0,1}", and produces a commitment c.
It satisfies the following two properties.

e Hiding, which states that no PPT adversary can distinguish between Com(0;r) and
Com(1;r) for uniformly sampled r < {0, 1}".

e Perfect binding, which states that there do not exist any rg, 71 such that Com(0;rg) =
Com(l; 7’1).



2. Let (Gen, Sign, Vrfy) be a perfectly correct secure digital signature scheme. Perfect correctness
states that for any message m,

Pr [Vrfy(vk, m, Sign(sk, m; rsign)) = 1] = 1,

TGen,T'sign<—10,1}7,(vk,sk):=Gen(17;7gen)
where rgen are the random coins used by Gen and 7sig, are the random coins used by Sign.

(a) Define f(z) to output the verification key vk output by Gen(1™;x). Show that f is a
one-way function (5 points).

(b) Show that there exists a secure digital signature scheme (Gen’,Sign’,Vrfy’) that is not
perfectly correct (i.e. it is only correct with probability 1 — negl(n)), for which f as
defined above is not a one-way function (5 points).
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4 Witness Indistinguishability (10 points)

Let L be a language in NP (e.g. graph three coloring) and let Ry, be the NP-relation defined by the
language L, meaning that = € L iff there exists a witness w (e.g. the graph three coloring function)
such that (x,w) € Rr. Let (P, V) be an interactive proof system for L. That is, both P and V are
initialized with an instance x, the prover P is additionally given a witness w such that (z,w) € Ry,
and P attempts to convince V that € L. They do so by interacting, and we let (P(w),V)(x)
denote the verifier’s view of this interaction, consisting of the messages sent back and forth, as well
as the verifier’s private state.

We say that (P, V) is witness indistinguishable (WI) if for all adversarial PPT V* all x € L, and all
distinct witnesses wp, w; such that (z,wp) € Ry, and (z,w1) € Ry, the following two distributions
are computationally indistinguishable.

(P(wo), V) (2) = (P(w1), V) ().

1. Show that if (P, V') is a computational zero-knowledge proof system, then it is also witness
indistinguishable (5 points).

2. Let (P,V) be a witness-indistinguishable proof system. Define (ﬁ,Nf/) to repeat (P,V) inde-
pendently k times in parallel (where k is some polynomial), and V' accepts if and only if V
accepts in all the parallel executions. Show that (P,V) is still witness indistinguishable (5
points).



5 CCA-Secure Encryption (40 points)

An injective trapdoor function f is a keyed injective one-way function that can be inverted given a
“trapdoor” td associated with the public key k. It consists of the following three algorithms.

e Gen(1") — (k,td) outputs a key and trapdoor pair.
o fi(x) =y evaluates the function on input z.

o [ l(td, y) = x inverts the function on output y, given the trapdoor td.

Correctness states that for any (k,td) < Gen(1™) and = € {0,1}", it holds that fk_l(td, fr(x)) ==
One-wayness states that for any PPT A,

[A(k, fr(2)) = 2] = negl(n).

Pr
(k,td)+Gen(1™),z+{0,1}"

We now define a stronger security property for injective trapdoor functions, which we call correlated
input security. Intuitively, this states that the adversary, given f, (z) for each ¢ € {1...n} (where
each k; is sampled independently), cannot recover x. Formally, for any PPT A,

Kty ko, = negl(n).
{(ki,tdnecen(lnf}ie[n]7%{0,1}”[“4( e fia (@), fin (@) = 2] = negl(n)

Let h(-) be a hard-core predicate for a correlated input secure injective trapdoor function f. Now
consider the following public-key encryption scheme.

e PKE.Gen(1") samples 2n keys {(k?,td)) < Gen(1"), (k},td}) + Gen(1")}¢[n) and defines the
secret key and public key as

pk := ((k(l]v k‘%), ceey (k‘g, kjrlz))
sk = ((td?,tdb), ..., (td°, td}))

e PKE.Enc(pk,m) for m € {0,1} samples v < {0,1}" and = < {0,1}" and outputs ct =
(v,¥1, ..., ¥Yn,c), where each y; = f v (x), and c = h(z) ®m.

Now answer the following questions. Note that an answer to part 3 is not necessarily required to
answer parts 4 and 5.
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1. Prove that correlated input security implies one-wayness (5 points).

2. Give a description of PKE.Dec(sk, ct) to go along with PKE.Gen, PKE.Enc defined above (5
points).



3. Show that, assuming f is a correlated input secure injective trapdoor function with hard-core
predicate h(-), this scheme satisfies CCA1 security (recall that CCA1 security does not give
the adversary access to the decryption oracle after the challenge phase) (10 points).

10
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4. Give the formal security definition of a one-time strongly unforgeable signature scheme
(Sig.Gen, Sig.Sign, Sig.Vrfy) (recall that “one-time” security states that security holds as long
as the adversary only sees a signature on a single message, and “strong unforgeablity” states
that the adversary cannot even produce a different signature on a message that it queried to
its signing oracle) (5 points).

5. Show how to use a one-time strongly unforgeable signature scheme to modify the public-key
encryption scheme given above so that it achieves CCA2 security (where the adversary is
additionally given decryption oracle access after the challenge phase) (5 points).

11



6. Prove that your modification of the scheme satisfies CCA2 security (10 points).

12



