CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 3

Due Date: February 15th, 2024 at 8:59pm via Gradescope

1. Pseudorandom Functions

Let f:{0,1}"™ x {0,1}" — {0,1}" be a pseudorandom function (PRF). For the functions f’
below, either prove that f’ is a PRF (for all choices of f), or prove that f’ is not a PRF.

(a) fi(x) == fr(Of|2)[| fr(1]|2).
(b) fr(z) := fu(Ol|z)|| fi(z]|1).
Solution

(a) Yes, f’ is a PRF. Suppose for the purpose of contradiction that f’ is not a PRF. Then,
there exists a PPT A that breaks the PRF security of f’. Construct PPT B using A to
break the PRF security of f as follows: B runs A internally. To answer A’s queries for
x, B queries the oracle (or challenger) with input 0||x and 1||z to get back yo and y;. B
then responds yo||y1 to A. Finally, B outputs whatever A outputs.

By definition, B querying fi(-) gives A access to fi.(-). If B is querying a random function
F:{0,1}™ — {0,1}", this gives A access to a random function F’ : {0,1}*~! — {0,1}?",
where F’ is defined as F'(x) = F(0||x)||F(1||) (this defines a one-to-one mapping from
random F to random F’). Therefore,

Pr[B0)(1") = 1] — Pr[BFO(17) = 1]] = [Pr[AO (1771 = 1] — Pr{AT" O (1771 = 1]

> nonnegl(n)
Hence B breaks the PRF security of f, contradiction.

(b) No. Construct A to break f’: it queries for x =0...0 and x =0...01.

2. Weak CPA Security

Consider a weaker definition of CPA security where in the indistinguishability experiment
the adversary A is not given oracle access to Enci(-) after choosing mg, m;. That is, A can
only query Encg(-) in phase 1, but not in phase 2. We call this definition weak-CPA-security.
Prove that weak-CPA-security is equivalent to CPA-security (i.e., Definition 3.22 in the text-
book).

Hint: Begin by showing via a hybrid argument that any A interacting in the usual CPA game
cannot distinguish whether its phase 2 queries are answered honestly (that is, if the response
to the query m is Ency(m) or an encryption of 0; Enc(0)).

Solution One of the directions is easy to see. We will show that weak-CPA-security
implies CPA security.

https://www.gradescope.com/courses/689970

CS 171, Spring 2024 Prof. Sanjam Garg

Consider an encryption scheme (Gen, Enc, Dec) for message space M that is weak-CPA
secure. We will now show that it is CPA secure via a hybrid argument. Specifically, we will
define a sequence of hybrids starting with the hybrid which corresponds to the CPA exper-
iment with the bit b = 0 and end with a hybrid which corresponds to the CPA experiment
with the bit b = 1. We will show that each of the intermediate hybrids are indistinguishable
from the weak CPA security of the encryption scheme.

Hyb, : This corresponds to the standard CPA experiment where the bit b = 0. More formally,
for any adversary A,

1. A key k is generated by running Gen(1™).

2. The adversary A on input 1" and oracle access to Ency(-) produces a pair of messages
mo, mMy.

3. ¢* is generated as Ency(my).

4. The adversary A continues to have oracle access to Enci(-) and outputs a bit b'.
5. The output of the experiment is defined to be ¥'.

We now give the next hybrid.

Hyb, : This is identical to the previous hybrid except that the last query to the encryption
oracle (say on a message m) in Phase-2 is answered as Enci(m*) where m™* is an arbitrary
message in M. More formally, for any adversary A,

1. A key k is generated by running Gen(1™).

2. The adversary A on input 1™ and oracle access to Ency(-) produces a pair of messages
mo, mMy.

3. ¢* is generated as Ency(my).

4. The adversary A continues to have oracle access to Encg(-) except that for the last
query on a message m € M, we answer it as Enci(m*) for some arbitrary m* € M.
The adversary outputs b’

5. The output of the experiment is defined to be ¥'.

More generally, we define Hyb; as follows:

1. A key k is generated by running Gen(1").

2. The adversary A on input 1™ and oracle access to Enci(-) produces a pair of messages
mo, m1 € M.

3. ¢* is generated as Encg(my).

CS 171, Spring 2024 Prof. Sanjam Garg

4. The adversary A continues to have oracle access to Encg(-) except that for the last
j queries to the encryption oracle, we answer them as independent encryptions of m*.
The adversary outputs b’

5. The output of the experiment is defined to be ¥'.

We now show that for any j € [¢] where ¢ is the number of queries that adversary makes in
phase-2, Hyb, is computationally indistinguishable to Hyb,_;.

Claim 0.1 Assume that (Gen, Enc,Dec) satisfies the weak CPA security definition. Then,
for any adversary A and j € [r], there exists a negligible function negl(-)

| Pr[Hyb;_; outputs 1] — Pr[Hyb; outputs 1] < negl(n)

Proof Assume for the sake of contradiction that there exists an adversary A and j € [r]
such for every negligible function negl(-),

| Pr[Hyb;_; outputs 1] — Pr[Hyb; outputs 1] > negl(n)

We will now use such an adversary A and the corresponding j, to construct an adversary B
against the weak CPA security definition of (Gen, Enc, Dec). We now give the description of
B.

Description of B.
1. B on input 1™, starts running A on input 1.

2. Phase-1 oracle queries. For every query that A makes to the the encryption oracle
in phase-1, B answers them using its own encryption oracle. Specifically, for every
message m that A queries to Encg(-) oracle, B submits m as the message to its Encg(-)
oracle and obtains the response. It forwards this response to A.

3. Challenge Messages. A now submits two messages mg, m1. B queries its encryption
oracle on mg and obtains the response and gives it to A.

4. Phase-2 oracle queries. For every query except that last j queries that A makes
to the encryption oracle, B answers them exactly as in phase-1. When the A asks its
(q—j+1)-th query on a message m, B does the following. It makes (j —1) queries to its
encryption oracle on m* and obtains the corresponding ciphertexts. It then produces
(m,m*) as the challenge messages to the weak CPA security challenger and obtains ¢*
as the challenge ciphertext. It returns ¢* as the response to the (¢ — j + 1)-th query.
For the last (j — 1) queries, it uses the encryptions obtained on m* to answer them.

5. A finally outputs a bit ¥’ and B outputs this bit.

Now, note that if ¢* is an encryption of the message m, then the view of A is identically
distributed to Hyb;_;. On the other hand, if ¢* was an encryption of the message m*, then
the view of A is identically distributed to Hyb;. Thus, if for every negligible function,

| Pr[Hyb;_; outputs 1] — Pr[Hyb; outputs 1] > negl(n)

CS 171, Spring 2024 Prof. Sanjam Garg

then, for every negligible function negl(-)
Pr[PrivK;Vﬁpa =1] > 1/2 + negl(n)

and this contradicts the weak CPA security of IT = (Gen, Enc, Dec).

| Pr[Hyb, outputs 1] — Pr[Hyb, outputs 1]| < Z | Pr[Hyb;_; outputs 1] — Pr[Hyb; outputs 1]|
Jj€ld

< ¢-negl(n) (from Claim [0.1)

= negl'(n)

Now, notice that in Hyb,, all the phase two queries of A are answered with encryptions of
an arbitrary message m*. Thus, via an identical argument as in Claim we can show that
Hyb, is computationally indistinguishable to Hyb* where the challenge ciphertext that was
given to A is an encryption of m;. Now, again via a same argument as before, we can show
that Hyb* is computationally indistinguishable to the standard CPA security game where
b= 1. Thus, (Gen, Enc, Dec) is standard CPA secure.

|

3. Modes of operations are not CCA-Secure

Show that the CBC and CTR modes of encryption are not CCA-secure.

Solution

1. CBC: Define an adversary A that outputs the messages mg = 0™ and mq = 1" to the
challenger, and receives a challenge ciphertext (IV,c). Note that for CBC mode, we
have ¢ = Fi,(IV @&my). The adversary then issues a decryption query for the ciphertext
(0™, ¢). This is a valid query since IV # 0" with overwhelming probability.

Now, the result for this query is m' = F_ L(¢) ® 0™ which turns out to just be IV. The
adversary then computes m’ @ I'V — this is either mq or my, which allows the adversary
to guess the correct bit.

2. CTR: Define an adversary A that outputs the messages mg = 0" and m; = 1" to
the challenger, and receives a challenge ciphertext (IV,c¢). Note that for CTR mode,
we have ¢ = Fi(IV + 1) @ mp. The adversary then issues a decryption query for the
ciphertext (IV,0™). This is a valid query since ¢ # 0" with overwhelming probability.
Now, the result for this query is m’ = Fi(IV 4 1) & 0", which turns out to just be
Fi(IV +1). The adversary then computes m’ @& ¢ — this is either mg or mq, which
allows the adversary to guess the correct bit.

