CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 8

Due Date: April 11th, 2024 at 8:59pm via Gradescope

1 A New Version of CDH (10 Points)

We will consider a modified version of the CDH (computational Diffie-Hellman) problem in
which an adversary is given ¢ and asked to compute gmg. We will show that this modified
CDH problem is as hard as the regular CDH problem.

Definition 1.1 (CDH Game CDH(n,G, A))

1. Inputs: n is the security parameter. G is an algorithm that generates a group G of
prime order q. A is a PPT adversary.

2. The challenger samples (G,q,g) < G(1™) and also samples x,y < Zq independently.
Then, the challenger sends to A the inputs (G, q, g, g%, g¥).

3. A outputs h € G. If h = g™Y, then the output of the game is 1 (win). Otherwise, the
output of the game is 0 (lose).

Definition 1.2 (Modified CDH Game mCDH(n, G, B))

1. Inputs: n is the security parameter. G is an algorithm that generates a group G of
prime order q. B is a PPT adversary.

2. The challenger samples (G,q,g) < G(1") and also samples x < Z,. Then, the chal-
lenger sends to B the inputs (G, q,g,9").

3. B outputs he G. If h = g(xz), then the output of the game is 1 (win). Otherwise, the
output of the game is 0 (lose).

Question:

1. Prove that if there exists a PPT adversary A for which Pr[CDH(n,G,.A) — 1] is non-
negligible, then there exists a PPT adversary B for which PrimCDH(n,G,B) — 1] is
non-negligible.

2. Prove that if there exists a PPT adversary B for which PrimCDH(n, G, B) — 1] is non-
negligible, then there exists a PPT adversary A for which Pr[CDH(n,G, A) — 1] is
non-negligible.

Together, these claims show that the modified CDH problem is hard if and only if the CDH
problem is hard.
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2 Large-Domain CRHF's From Discrete Log (10 Points)

We saw in lecture! how to construct a CRHF assuming the discrete log problem is hard. The
CRHF maps Zg — G (where G is a cryptographic group of size ¢). In this problem, we will
extend the domain to Zfl for any t = poly(n).

Definition 2.1 (A Hash Function H = (Gen, H))

e Gen(1™): Run G(1™) to obtain (G,q,g). Then sample group elements hy, ..., hi—1 + G
independently and uniformly at random. Then output:

s = (G7 q,9, (h17 ey ht—l))
as the key.

o H*(x) takes input x = (x1,...,x) € Zg. Then it outputs
t—1

H(z1,...,2) == g™t - thz
i=1

Question: Prove that H is collision-resistant by completing the proof of theorem 2.2 below.
Theorem 2.2 If the discrete log problem is hard for G, then H is collision-resistant.
Proof

1. Overview: Assume for the purpose of contradiction that H is not collision-resistant.
Then there exists a PPT adversary A that, on a randomly generated s, outputs a
collision with non-negligible probability. Then we will construct a PPT adversary B
that breaks the discrete log assumption.

2. B will embed the discrete log instance into one index i € {1,...,¢t — 1} of the CRHF
and sample the other indices of the CRHF randomly.

Construction of B:

(
(

a) Receive (G, q, g, h) from the challenger.

b) Sample i < {1,...,t — 1}, and set h; :== h.

(c) For each j € {1,...,t —1}\ {i}, randomly choose a; < Z, and set h; := g%.

(d) Run A on (G, 4,9, (hy,... ,ht,l)), and receive a collision (z1, ..., 2¢) and (2], ..., z}).
)

(e) In this case, B outputs

y:

as the discrete log of h.

1See lecture 13, slides 19-20.
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3. Lemma 2.3 If A breaks the collision-resistance of H, then B solves the discrete log
problem with non-negligible probability.

Proof

Note: The size of the box above does not indicate the size of the proof. The proof will
most likely not fit in the box.
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3 Signatures (10 Points)

Let IT = (Gen, Sign, Verify) be a (secure) signature scheme that accepts messages m € {0,1}".
We will use II to construct a candidate signature scheme II' that introduces additional ran-
domness into the signing algorithm.

I' = (Gen’, Sign’, Verify'):

1. Gen/(1"): Same as Gen(1").
2. Sign’(sk,m):

(a) Let m € {0,1}". Then sample r < {0, 1}".
(b) Compute o¢ = Sign(sk, m & r) and o1 = Sign(sk, ).
(¢) Output o = (r,09,01).
3. Verify'(pk, m, o): Output 1 if Verify(pk,m & r,0¢) = 1 and Verify(pk,r, 1) = 1. Output

0 otherwise.

Question: Indicate whether or not I’ is necessarily secure, and prove your answer.



