CS17/1: Cryptography

Lecture 11

Sanjam Garg

https://en.wikipedia.org/wiki/Auguste_Kerckhoffs
https://creativecommons.org/licenses/by-sa/3.0/

Cryptographic Hash
Functions

Hash Functions

* Cryptographic Hash Functions: a deterministic
function mapping an arbitrary long input string to a
shorter output string.

* Hash functions can be keyed or unkeyed

* In theory: Keyed
* In practice: Unkeyed (fix a key once and for all)

Hash Function Definition

* Hash function H: {0,1}* — {0,1}*
* A collision is distinct x and x’ such that H(x) = H(x")

* Classical use is data-structures where collisions are
undesirable.

* However, for cryptographic hash functions, this will
be a requirement.

* Even when an attacker is maliciously trying to find
collisions.

Hash Function Definition

* Hash function H: {0,1}* — {0,1}*
* A collision is distinct x and x’ such that H(x) = H(x")

* A hash function (with output length £) is a pair of
PPT algorithms (Gen, H) satisfying the following:
* Gen(1™): Outputs s.
 H: Oninput a key s and a string x € {0,1}* output a
string H® (e)-€{0 1141,
C7 s is public

o If HS is defined only for inputs {0,1}* ™ where
£'(n) > £(n), then (Gen, H) is a fixed-length hash
function for inputs of length £’.

Hash Function Security

HashColl, ;(n) is

1. Sample s « (1™). collision resistant if

2 Let x ¥ be the V PPT A it holds that:
output of A(1",s). Pr|HashColl, (n) =

3. Output 1ifx # x'ana 1] < negl(n)

H®(x) = H%(x") and
0 otherwise.

No secrets!

Hash Function: In practice

* Have a fixed output length just like block ciphers

* Also, they are unkeyed.
* Problematic in theory

Generic Attacks on Hash
Functions

* Hash function H: {0,1}3’ — {0,1}* where £’ > ¢
* A collision is distinct x and x’ such that H(x) = H(x')

 Can we find collisions?

* Yes, let x4, ... x,¢, , be arbitrary distinct values in
{0,1}
* Then we have that 3 i, j such that H(x;) = H(x;)

Will drop the superscript s which
is now implicit.

Generic Attacks on Hash
Functions

* Hash function H: {0,1}{')’ — {0,1}* where #' > ¢
* A collisionis distinct x and x’ such that H(x) = H(x')

e Can we find collisions faster?

* Let x4, ... x4 be distinct values in {0,1}3, then what
is the probability that we will find a collision?

» When g > 2¢ then the probability is 1, what if g is
smaller?

. Im/pzortant A much smaller value of g suffices, i.e.

Heuristic Analysis

* View H as a random function
2

For x1, ..xq Pr|3i,j H(x;) = H(x;)] z%

* Thus, probability is ¥ for ¢ = 0(2%/?)
 Birthday problem: What is the probability that g people
have birthday on the same day of the year?
* Only need V365 = 23 people to get a collision with
probability %
e Attempt 1: The probability two hashes collide is 1/2’?.
Thus, probability of collision is (g) . 1/2°%.
* Error: The probabilities are not independent.
* See Appendix A.4 (in book) for analysis.

Implications of the birthday attack

* Need hash output to be £ = 2n to get security
against attackers running in time 2™.

* This is double the length of the keys needed for
block ciphers.

* Thus, to get 128-bits of security we need a hash
output of 256 bits.

* Necessary but not a sufficient condition

 Birthday attack works for all hash functions, but there
could be other more 'devastating’” attacks.

Domain Extension: The Merkle-
Damgard Transform

* Given (Gen, h) a fixed length hash function from
2n bit inputs to n bit outputs. Construct (Gen, H)
as follows:

* H(M): Parse M as m4 ... mg, where my is padded
with Os to make it of appropriate length

m, m, mpg
On o ﬁi

HM) = H(M[|0)

Domain Extension: The Merkle-
Damgard Transform

* Given (Gen, h) a fixed length hash function from
2n bit inputs to n bit outputs. Construct (Gen, H)
as follows:

* H(M): Parse M as m4 ... mg, where my is padded
with Os to make it of appropriate length

Domain Extension: The Merkle-
Damgard Transform

 |If his collision-resistant, then so is H.
my m, mpg |M|

On

* Proof: Collision on H
e Say Hmy, ..., mp) = H(mi, ...,m;,)
o |M| = |M’'|,then h(:,|M]|) = h(:, |M’])
« [M| = |M'|, largesti suchthat h(:,m;) = h(:,m;)

MACs using Hash Functions:
Hash-and-MAC

* Previously, saw construction of MACs from
PRF/block-cipher

* Also, CBC-MAC allowed to construct MACs with
short tag lengths for arbitrary length messages

* Hash-and-MAC paradigm to do the same.

Hash-and-MAC

* Let (Gen,Mac,Vrfy) be a MAC on messages of
length £(n) and (Geny, H) be a hash function with
output length £(n). Then MAC
(Gen',Mac',Vrfy") for arbitrary-length messages
is:

* Gen'(1™): Output k' = (k,s) where k « Gen(1")
and s « Genygy(1™").

* Mac,(m € {0,1}"): Output Macy (H*(m))
* Vrfy,(m,t): Output 1iff Vrfy, (H*(m),t) = 1.

Security

* If the MAC is secure for fixed-length messages and
H is collision-resistant, then the construction on
previous slide is a secure MAC for arbitrary-length
messages.

 Proof Sketch: Say the attacker outputs (m*, t™)

* Case l: Him™) = H(m;) for some i, then we have a
collision on H.

e Case ll: H(m*) #+= H(m;) for all i, then we have a
forgery for the underlying fixed-length MAC.

Other Applications

* Blockchains

* Virus Fingerprinting

e Deduplication

* Peer-to-peer (P2P) file sharing

See So Far...

/ CPA-Enc \ / CCA-Enc
Authentlc'ated
\ Encryption

/ Unforgeable Enc

How can we

construct PRFs?

Constructions of
PRFs/Block-Ciphers

e Theoretical Constructions®

* Practical Constructions . ¢ @

One-Way Functions

\ / CPA-Enc \ / CCA-Enc

Authenticated

\ Encryption
/ Unforgeable Enc

More accurately...

CCA-Enc
Authenticated /

Encryption
Unforgeable Enc

Define: One-Way Functions

e A function f: {0,1}* —» {0,1}" that is easy to
compute but hard to invert

f

i

One-Way Functions: Formally

* A function f: {0,1}* - {0,1}" is a one-way
function if:

There exists a polynomial-time
algorithm M, computing f; i.e., for all x, M¢(x) =
f(x).

* (hard to invert) For all PPT A, there is a negligible
functlon negl such that

[A(17, £(0)) € F(F()] < negl(n)

x<—{0 1}n

One-Way Functions (Pictorially)

Challenger Adversary A
x <« {0,1}"
y = f(x)
1",y
xl

N

Output 1 iff f(x) = f(x")

Isga OFW?

* Given: f isa OWF
. g(x) = {]:C(x) if x = 0"

otherwise

* Yes, because x = 0™ with negligible probability

Candidate One-Way Functions

* Factoring Based
frue(,y) =x-y
where x and y are two equal length primes.

e Subset-sum Based

fos(xq, vy X0,]) = (X4, oo Xo, [Z xj mod 2™])
JEJ
* Discrete-Log Based:
fp.g(x) = [g* mod p]
where p is large prime and (a special value) g € {2, ...p —

1]

Thank You!

	Default Section
	Slide 1: CS171: Cryptography
	Slide 2: Cryptographic Hash Functions
	Slide 3: Hash Functions
	Slide 4: Hash Function Definition
	Slide 5: Hash Function Definition
	Slide 6: Hash Function Security
	Slide 7: Hash Function: In practice
	Slide 8: Generic Attacks on Hash Functions
	Slide 9: Generic Attacks on Hash Functions
	Slide 10: Heuristic Analysis
	Slide 11: Implications of the birthday attack
	Slide 12: Domain Extension: The Merkle-Damgård Transform
	Slide 13: Domain Extension: The Merkle-Damgård Transform
	Slide 14: Domain Extension: The Merkle-Damgård Transform
	Slide 15: MACs using Hash Functions: Hash-and-MAC
	Slide 16: Hash-and-MAC
	Slide 17: Security
	Slide 18: Other Applications
	Slide 19: See So Far…
	Slide 20: Constructions of PRFs/Block-Ciphers
	Slide 21: One-Way Functions
	Slide 22: More accurately…
	Slide 23: Define: One-Way Functions
	Slide 24: One-Way Functions: Formally
	Slide 25: One-Way Functions (Pictorially)
	Slide 26: Is g a OFW?
	Slide 27: Candidate One-Way Functions
	Slide 28: Thank You!

