
CS171: Cryptography
Lecture 14

Sanjam Garg

All Photos are by Unknown Author and are licensed under CC BY-SA

Cryptographic Group

• If  and  are primes such that  =  −  and let

g ∈ 
∗ be an elements of order . Let  = ⟨⟩ be

the group of order .

• Example, p = 23 and q = 11

• 
∗ = , , …  and  ⋅  =   3

⟨⟩

• 
∗ = , , …

•  = 

•  = , 4, 8, 6, 9, 8, 3, 3, 6, ,  = 

• 5 = 5, , , 4, , 8, 7, 6, ,, … 5 = 

•  = ,  = 

• Pick any  such that  = .

• For example, H = ⟨⟩ is of prime order

• For hardness use large primes.

The Discrete-Log Problem

• Let G() be a PPT algorithm that generates

description of a cyclic group, i.e., order  (where
|| = ) and a generator .

• Unique bit representation for each element and
group operation can be performed in time

polynomial in .

• Sampling a uniform group element: Sample  ← 
and compute .

DLOG Problem

DLog
A,G (n)

1. Run G() to obtain
(,, ).

2. Pick uniform  ∈ .

3. A is given ( ,, , )
and it outputs .

4. Output 1 if  = 
and 0 otherwise

Discrete-Log Problem is

hard relative to G if

∀   ∃  such
that:

Pr DLog
A,G (n) =  ≤ negl(n).

The Diffie-Hellman Problems

• The computational variant: given  and 

compute 

• The decisional variant: given  and  distinguish
between  and a random group element.

Computational Diffie-Hellman
Problem

DH
A,G (n)

1. Run G() to obtain
(,, ).

2. ,  ← 
∗.

3. A is given

(,, , ,) and
it outputs .

4. Output 1 if  = 
and 0 otherwise

CDH is hard relative to G
if

∀   ∃  such
that:

Pr DH
A,G (n)=  ≤ negl(n).

Decisional Diffie-Hellman Problem

DDH
A,G (n)

1. Run G() to obtain
(,, ).

2. , ,  ← 
∗. Sample a

uniform bit .

3. A is given
(,, ,,,+)
and it outputs .

4. Output 1 if  = and 0
otherwise

DDH is hard relative to G if

∀   ∃  such that:

Pr DDH
A,G (n) =  ≤ ½ +

negl(n).

Public-Key Cryptography
• Public-Key Encryption

• Digital Signatures

Public-Key Encryption

Alice

Bob

(, )



Public (but

authenticated)

channel

Only one secret-

key.

No secret-keys.



Alice can decrypt!

Public-Key Encryption vs Private-
Key Encryption

• Public-key encryption is strictly stronger than

private-key encryption

• Then why even use private-key encryption?

• Public-key encryption is roughly 2-3 orders of magnitude
slower than private-key encryption

Public-Key Encryption

• A public-key encryption scheme is a triple of PPT

algorithms (Gen, Enc, Dec) such that:

1.   → , 

2.  , → 

3.  ,  → /⊥

• Correctness: For all ,  output by   ,

we have that ∀ (legal) , ,  , =


• Security: EAV-security, CPA-security?

EAV Security

PubKA,Π
eav()

1. ,  ←   and
give pk to A.

2. A outputs0, ∈
, ∗, |0| = ||.

3. b {0,1}, 
(,)

4.  is given to A and it
outputs b’

5. Output 1 if  = ’ and
0 otherwise

Encryption scheme =
(,,) is
indistinguishable in the
presence of an
eavesdropper, or is EAV-
secure if

∀ PPT  it holds that:

Pr PubKA,Π
eav =  ≤




+ negl(n)

EAV-security vs CPA Security

• In the public-key setting the two notions are

identical.

• Since, given the public-key, encryption can be
performed (without any secret values)

• Hence, encryption must be randomized

What about security of multiple
messages?

• CPA-security implies security for encrypting

multiple messages (same as the private-key setting)

• (, …): (,) … (,)

• Proof via a direct hybrid argument

CCA Security (A bigger concern in
the PKE setting)

• Attacker can obtain decryptions of ciphertexts of its
choice itself

• Attacker can more easily come up with illegitimate
ciphertexts (cannot have a MAC on a ciphertext)

• Malleability: An attacker can given a ciphertext 
encrypting a message  could obtain a ciphertext
 of a related message  (without knowing 
itself)

CCA Security

PubKA,Π
CCA()

1. ,  ←   and
give pk to A.

2. (,⋅) outputs
0, ∈ , ∗, |0| =
||.

3. b {0,1}, ∗
(,)

4.  is given to (,⋅)
and it outputs ’ (query
∗ not allowed)

5. Output 1 if  = ’ and 0
otherwise

Encryption scheme =
(,,) is
indistinguishable in the
presence of a CCA attacker, or
is CCA-secure if

∀ PPT  it holds that:

Pr PubKA,Π
cca =  ≤




+ negl(n)

Much harder in the PKE

setting.

Construction of PKE

ElGamal Encryption

1.   → , 
1. Run G() to obtain (,, ).
2. Sample  ←  and set  = 

3. Set  = (,, , ) and  = .

2.  , ∈  →  =  , 
1. Parse  = (,, , )
2. Sample  ←  and set  =  and  =  ⋅ 

3.  ,  → /⊥
1. Parse  = , 
2. Output

2

c1


Correctness?

Security based on

DDH!

Encrypting long messages

• Encrypting block-by-block is inefficient

• Ciphertext expands for each block

• Public-key encryption is “expensive”

• Anything better?

Hybrid Encryption

• Use public-key encryption to set up a shared secret-

key  which is then used to encrypt the message
itself

• Benefits:

• The inefficiency of the public-key encryption is not the
bottleneck; i.e. we get amortized efficiency as the
message is large

• The ciphertext expansion over the message is small

Hybrid Encryption

k

pk

ciphertext

encapsulated

key


′

Decryption

natural.

The functionality of public-key encryption

at the (asymptotic) efficiency of private-keyencryption!

Thank You!

