CS171: Cryptography

Lecture 21

Sanjam Garg

1/13

Plan for today

> Saw zero-knowledge protocol for the graph three coloring problem.
» Today: zero-knowledge protocol for graph hamiltonicity.
» Extending to arbitrary computation NP-complete.

» Succinct Arguments.

2/13

Zero-Knowledge Proof System

Clx,w)=1
X, w X
Prover wants e
to keep w 7 : < Verifier outputs 0/1. ‘
hidden \ u
Prover Verifier

» Syntax: Two algorithms, P(1",x, w) and V(1", x).
» Completeness: Honest prover convinces an honest verifier with overwhelming probability.

Pr[V outputs 1 in the interaction P(1", x, w) <> V(17,x)] = 1 — neg(n)

» Soundness: A PPT cheating prover P* cannot make a Verifier accept a false statement.
For all PPT P* x such that Yw, C(x, w) = Othen we have that

Pr[V outputs 1 in the interaction P*(17,x) +> V(1",x)] = neg(n)

» Zero-Knowledge: The proof doesn't leak any information about the witness w. 3 a PPT
simulator S that for all PPT V* x, w such that C(x,w) =1, we have that V PPT D:

Pr[D(V*'s view in P(1",x,w) <> V*(1",x)) = 1] — Pr[D(SY" (1", x)) = 1]| < neg(n)

3/13

Graph Hamiltonian Cycle Problem

» Graph G =(V,E) with V ={1,...n}.
» Represent as a n x n matrix M such that M; ; = 1 if (i,j) € E and M;; = 0 otherwise.
» Task: Does these exist a cycle C C E in G that visits each vertex exactly once?

» Figuring out whether a graph has a Hamiltonian Cycle is believed to be computationally
hard.

4/13

Zero-Knowledge Proof System for Graph Hamiltonicity Problem

3C C E — a Hamiltonian Cycle in G.

Samples random G=(V,E),C =(V,E)
permutation a : Vi, j, comij = Com(3iji ri)).
(1,...n} > {1,...n} — | d R
and randomness r; Challenge b Sample uniform
fori,j € {1,...n}. . b+ {0,1}.
Set5;; = 1if \ If b=0 then send «,Vi,j r;;

), a(j)) € E and If b=1 then send r;;Vi,j
o) e | Cn

: such that (a(/), a(j)) € C

If b = 0 then verifier
checks that commitments
are well-formed. If b=1

Completeness: Since G has a Hamiltonian Cycle C, Verifier
should accept in both cases.

Soundness: Let com;; = Com(d;; ri;j). Since the graph is not then it checks that the
Hamiltonian either committed graph is not a permutation of G or commited /permuted
the committed graph doesn’t have a cycle. Verifier rejects with graph has a Hamiltonian
probability at least % Amplification by repetition. cycle.

Zero-Knoweldge: Cropping Argument. Like Graph 3 Coloring. 5/13

Extending to any computation

» Give C, x we can construct a graph G = (V, E).
» Such that: 3 a hamiltonian cycle in G if and only if 3w such that C(x, w) = 1.
> Very useful!

6/13

Succinct Non-Interactive Argument System (SNARG)

7

structured
reference
string

7 could be zero-
knowledge or not

—

SIS, X, W

\

Prover

Clx,w)=1

srs, X

..

Verifier

Verification time,
post pre-processing,
is < |C|.

» Completeness: An honest prover should be able to convince an honest verifier with
overwhelming probability.
» Soundness: A PPT cheating prover cannot generate an accepting proof for a false

statement.

» Zero-Knowledge: The proof doesn't leak any information about the witness w.
> Not all applications need zero knowledge, e.g. zk-rollups.

7/13

Polynomial equality check

>

4
>
>

Alice has a string A = (ag, ...an—1) and Bob has B = (by, ... b,_1) where each
aj, b; € {O, 1}

They want to check if A Z B with minimal communication.

Let g be large prime.

Alice computes polynomial a(x) = ", a; - x' mod g at a random point r € {0,...q — 1}
and sends y = a(r) to Bob.
bob computes polynomial b(x) = >, b; - x' mod q at point r and checks that y = b(r).
If yes, then Bob assertains that A = B and no otherwise.
If a(x) # b(x) then
n—1

q

PrIA(r) = B(r)] <

8/13

Verifying Matrix Multiplication

>

vyy

VvyVvyVvYy VYVVVY

Given two input matrices A, B € F"*" we want to compute A - B.
Let's say F = {0, ... p — 1} and addition, multiplication and division are modulo p.
Fastest know algorithm takes time n?37.

Can a prover P who knows the answer C convince a verifier V that the answer is correct
in less time?

Yes, here is the protocol.

Both P and V get A, B, C and P wants to convince V that C = A B.
Verifier picks random r € F.

Let x = (r,r?,...r").

V checks if C-x = A-B- x.

Takes time O(n?).

If A- B = C then V accepts with probability 1.

If A- B # C then V accepts with probability < n/|F|.

9/13

Check the roots of a polynomial

> P wants to prove that a given poylonomial f(x) evlautes to 0 on inputs
H=1{0,1,...n—1}.

Note that [[;cpy(x — 1) | f(x).

Or, f(x) = g(x) - Zu(x), where Zy(x) = [T;cpy(x —).

P commits to f(x) and g(x).

V samples a random challenge r and sends to P.

P opens f(r) and g(r).

V' checks that f(r) = g(r) - Zu(r).

What is V's running time? Grows with |H|. Can we make it smaller?

vVvyVvyvVvyVvyYyvyy

10/13

Choice of H

» Using H = {0,1...n — 1} is inefficient.

> Instead we use H = {w,...w"} the nt" (where n = 2¥) roots of unity w” =1 and w"/? # 1.

The exponent space needs to be such that 2% divides p — 1, which is the case for
BLS12-381 for k = 32.

> How do we find these roots of unity?

v

By Fermat's Littel Theorem for all o € Z, we have aP~! = 1.
> For a random a, set w = a7 is one of the n' roots of unity in F. Check if w” =1 and
w"/? 2 1. If not true, then repeat. Have to do it only once.
What do we gain?
>

b Li(x) = Lyi(x) = dmCm) Wl a1

Hj?,i(w‘—wf) n x—w'

11/13

KZG Polynomial Commitment/Pairing Curve BLS12-381

>

>
>

Gives groups G; = (g1), G = (g2) and Gt (of the same prime order p) along with a
bilinear pairing operation e.
For every a, 5 € Z%, we have that e(gf‘,gzﬁ) = e(g1, &)™
Setup: srs generation that supports committing to degree d — 1 polynomials:

> Sample 7 < Zj.

» srs=(ho=g1, M = gf,gfz, worchg = g{d_l,gg,h’ =g5)
Commitment: Given srs and a polynomial f(x) = ¢o + c1x + ...ca— 1x971 of degree d — 1,
we can compute Com(f) as:

d—1
F = Com(f) =g{" = [] ¢
i=0

Opening: Show that f(z) = s. In this case, g(x) = f(x) — s is such that g(z) = 0. Or,
x — z divides f(x) — s.

» Sender computes T(x) = F)=F2) and sends W = Com(T).

X—

» Receiver Accepts if: e () () .

12/13

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that o((y...¢,) = ((i...Cn)-

How to test?
» Check two multisets ({1, 2...¢n) and ({7, (5-.-Cl,) are the same. How about a check:

?
[a=11¢
i i
» How about this instead over polynomials?

[T+ =TT+

1 1

» How about a specific permutation o7

n n

[T+ iy +x) £ [T + o i)y +x)

i=1 i=1

13/13

	Introduction
	Introduction

