
CS171: Cryptography
Lecture 22

Sanjam Garg

1 / 16

Plan for today

▶ Succinct Arguments.

2 / 16

Succinct Non-Interactive Argument System (SNARG)

Prover Verifier

C(x ,w) = 1srs, x ,w srs, x

structured
reference
string

Pre-processing
depending only on
C , srs and takes
time poly(|C |, srs)

π

π could be zero-
knowledge or not

|π| ≪ |C |

Verification time is
≪ |C |.

▶ Completeness: An honest prover should be able to convince an honest verifier with
overwhelming probability.

▶ Soundness: A PPT cheating prover cannot generate an accepting proof for a false
statement.

▶ Zero-Knowledge: The proof doesn’t leak any information about the witness w .
▶ Not all applications need zero knowledge, e.g. zk-rollups.

3 / 16

Polynomial Commitment

▶ P can commit to some polnomial f of some ia priori fixed maximum degree.

▶ We denote the commitment to f by [f].

▶ The commiter can open [f] at any input r and prove that the provided opening f (r) is
correct with respect to the previously provided commitment [f].

4 / 16

Check the roots of a polynomial

Prover Verifier

[f][f], f

∀x ∈ H, f (x) = 0

Compute q(x) =
f (x)
ZH (x)

.

[q] Sample r ← F.

Challenge r

Open f (r) and q(r) Outputs f (r)
?
=

q(r) · ZH(r).

▶ f (x) ̸= 0.

▶ H = {ω, ω2 . . . ωn}.
▶ ZH(x) =

∏
α∈H(x − α) = xn − 1.

▶ ZH(r) = rn − 1 can be computed efficiently in O(log n) time using the repeated squaring
algorithm.

5 / 16

Check relationship between two polynomials (Example)

Prover Verifier

[f], [g][f], [g], f , g

∀x ∈ H, f (x) = 2 · g(x)

Compute q(x) =
f (x)−2g(x)

ZH (x)
.

[q] Sample r ← F.

Challenge r

Open f (r), g(r), q(r)

Outputs f (r) −
2g(r)

?
= q(r) ·

ZH(r).

▶ H = {ω, ω2 . . . ωn}.
▶ ZH(x) =

∏
α∈H(x − α) = xn − 1.

▶ f (x) is a polynomial such that for each ωi ∈ H, f (ωi) = 2 · i .
▶ g(x) is a polynomial such that for each ωi ∈ H, g(ωi) = i .

▶ As polynomials f (x) ̸= 2g(x).

▶ ZH(r) = rn − 1 can be computed efficiently in O(log n) time using the repeated squaring
algorithm.

6 / 16

Check two multisets A and B are the same

Prover Verifier

[f], [g][f], [g], f , g

{∀x ∈ H, f (x)} = {∀x ∈ H, g(x)}

Challenge γ
Set z(x) such that

∀i ∈ {1 . . . n}, z(ωi) =∏i−1
j=1

aj+γ

bj+γ
.

q(x) =
z(xω)(g(x)+γ)−z(x)(f (x)+γ)

ZH (x)

[z], [q]
Sample r ← F.

Challenge r

Open z(ω), z(r), z(rω)

Open f (r), g(r), q(r)

Outputs

z(ω)
?
= 1 and

z(rω)(g(r) +
γ)− z(r)(f (r) +

γ)
?
= q(r)·ZH(r).

▶ A = {a1, . . . an} and B = {b1, . . . bn}.
▶ f (x) is a polynomial such that for each ωi ∈ H, f (ωi) = ai .

▶ g(x) is a polynomial such that for each ωi ∈ H, g(ωi) = bi .

▶ As polynomials f (x) ̸= g(x).

▶ Note that z(ω) = z(ωn+1) = 1. And we have that ∀i ∈ 1, . . . n, z(ωi+1) = z(ωi) · ai+γ
bi+γ .

▶ Prove: (i) z(ω) = 1, and (ii) ∀x ∈ H we have that z(xω)(g(x) + γ)− z(x)(f (x) + γ) = 0.

7 / 16

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that σ(a1...an) = (b1...bn)?

▶ σ(1) : Fn → Fn as a function that permuates the input vector.

▶ σ(2) : {1, . . . n} → {1, . . . n} as a function that maps input index to output index of the
permuatation.

▶ σ(3) : H → H as a polynomial that maps ωi to ωσ(2)(i).

▶ For the identity permutation: σ(3)(x) = x .

▶ Will refer to σ(1), σ(2), and σ(3) as just σ when clear from context.

8 / 16

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that σ(a1...an) = (b1...bn)?
f (x) and g(x) are such that ∀ωi ∈ H, f (ωi) = ai and g(ωi) = bi .
Pre-Processing Step: P and V generate [σ] - commitment to σ in the pre-processing step.

How to test?

▶ For verifier chosen β, γ consider polynomial z (that Prover commits) such that for all
i ∈ {1, ...n}

z(ωi) =
i−1∏
j=1

aj + β · σ(ωj) + γ

bj + β · ωj + γ

▶ Verifier checks that (i) z(ω) = 1, and (ii) for all x ∈ H we have

that z(xω)
z(x) = ai+β·σ(x)+γ

bi+β·x+γ .

▶ Note that z(ωn+1) = z(ω) = 1. (Only need to prove once!)

▶ Prove that ∀x ∈ H we have that z(x · ω) · (g(x) + β · x + γ)
−z(x) · (f (x) + β · σ(x) + γ) = 0.

ω = ωn+1

ω2

ωn

9 / 16

Prove that σ(A) = B

Prover Verifier

[f], [g], [σ][f], [g], f , g , [σ]

σ(f (ω) . . . f (ωn)) = (g(ω) . . . g(ωn))

Challenge β, γ
Set z(x) such that

∀i ∈ {1 . . . n}, z(ωi) =∏i−1
j=1

aj+βσ(ωj)+γ

bj+βωj+γ
.

q(x) =
z(xω)(g(x)+βx+γ)−z(x)(f (x)+βσ(x)+γ)

ZH (x)

[z], [q]
Sample r ← F.

Challenge r

Open z(ω), z(r), z(rω)

Open f (r), g(r), q(r), σ(r)

Outputs

z(ω)
?
= 1 and

z(rω)(g(r) +
βr + γ) −
z(r)(f (r) +

βσ(r) + γ)
?
=

q(r) · ZH(r).

▶ Note that z(ω) = z(ωn+1) = 1. And we have that

∀i ∈ 1, . . . n, z(ωi+1) = z(ωi) · ai+βσ(ωi)+γ
bi+βωi+γ

.

▶ Prove: (i) z(ω) = 1, and (ii) ∀x ∈ H we have that
z(xω)(g(x) + βx + γ)− z(x)(f (x) + βσ(x) + γ) = 0.

10 / 16

PlonK Arithmetization

C(x ,w) = 1 be a circuit of n gates, where each gate is fan-in 2 and support + and × gates.

Simplifying setting:
▶ Ignore zero-knowledge.
▶ Assume a polynomial commitment scheme (e.g. KZG) — use [f] notation as commitment

of f .
▶ Simplify construction — ignore optimizations.

For the i th gate in the circuit we have a constraint on input wires values ai , bi and output wire
value ci specified by constants qL,i , qR,i , qO,i , qM,i , qC ,i :

qL,i · ai + qR,i · bi + qO,i · ci + qM,i · ai · bi + qC ,i = 0

+ gate then qL,i , qR,i = 1, qO,i = −1 and qM,i = qC ,i = 0.
× gate then qL,i , qR,i = 0, qO,i = −1 and qM,i = 1, qC ,i = 0.

qL(x) =
∑
i

qL,i · δi (x),

where δi (x) = 1 for x = i and 0 for x ∈ H\{i}.
Constraint Checks: Given H ⊂ F, |H| = n, define degree-n− 1 polynomial qL(x) such that for
all i ∈ H, qL(i) = qL,i . Similarly, define qR , qO , qM , qC and a, b, c . For all x ∈ H we want to
check

qL(x) · a(x) + qR(x) · b(x) + qO(x) · c(x) + qM · a(x) · b(x) + qC (x) = 0

Need to prove that certain wire values are the same. For example, let w = (a, b, c) and say we
want to test z(1) = z(3) = z(5). For a permutation σ = (1→ 3, 3→ 5, 5→ 1) we can test
this by checking σ(w) = (w).

Permutation Checks: More generally, For some circuit dependent permutation σ we need to
prove σ(w) = (w).

Explanation: Partition w into sets of wires that (form a cycle) have the same value.

Input/Output Check: The input used is correct and the output of the computation is 1.

11 / 16

Constraint Check: How to Prove!

Constraint Check: Prove that for all x ∈ {0, ...n − 1} we have:

qL(x) · a(x) + qR(x) · b(x) + qO(x) · c(x) + qM(x) · a(x) · b(x) + (qC (x)− PI (x)) = 0

How to test?
▶ The above is only true if there exists a quotient polynomial T (x) such that

qL(x)·a(x)+qR(x)·b(x)+qO(x)·c(x)+qM(x)·a(x)·b(x)+(qC (x)−PI (x)) = T (x)·ZH(x).

▶ It suffices for the verifier to check the following at a random point z ∈ F:

qL(z) · a(z)+qR(z) ·b(z)+qO(z) · c(z)+qM(z) · a(z) ·b(z)+ (qC (z)−PI (z)) = T (z) ·ZH(z),

where the verifier can compute ZH(z) locally.
▶ Or, prover commits to a(x), b(x), c(x) and T (x) and opens a = a(z), b = b(z), c = c(z)

and T (z) for a verifier chosen z.
▶ Problem: But degree of T (x) is large. So, commit to degree-n− 1 Tlo ,Tmid ,Thi such that

Tlo(x) + Tmid(x) · xn + Thi (x) · x2n = T (x).
▶ It suffices to prove that the following polynomial is 0 for x = z:

qL(x) · a+ qR(x) · b+qO(x) · c + qM(x) · a · b + (qC (x)− PI (z))

− (Tlo(x) + Tmid(x) · zn + Thi (x) · z2n) · ZH(z) = 0

▶ Verifier Precomputes g
qE (τ)
1 for each E ∈ {L,R,O,M,C} and computes PI (z) and ZH(z)

at verification time.

12 / 16

Permutation Check: How to Prove!

▶ For a circuit dependent permutation σ : [3n]→ [3n] we need to prove
σ(a1, ...an, b1, ...bn, c1, ...cn) = (a1, ...an, b1, ...bn, c1, ...cn).

▶ Define σ∗(i) =


ωσ(i) if σ(i) ∈ {1...n}
k1 · ωσ(i) if σ(i) ∈ {n + 1...2n}
k2 · ωσ(i) if σ(i) ∈ {2n + 1...3n}

▶ For c ∈ {1, 2, 3}, Sc ,Sσc be functions/polynomials {ω1, . . . ωn} → H ′ where
H ′ = H ∪ (k1 · H) ∪ (k2 · H) and where k1, k2 ∈ F are such that H, k1H, k2H give 3n
distinct elements.

Sc(X) =


X c = 1

k1X c = 2

k2X c = 3

, Sσc(X) =


σ∗(i) for c = 1 on input X = ωi

σ∗(i + n) for c = 2 on input X = ωi

σ∗(i + 2n) for c = 3 on input X = ωi

▶ Same as before, we define z(ω) = 1 and for all i ∈ {2, ...n}

z(ωi) =
i−1∏
j=1

aj + β · ωj + γ

aj + β · σ∗(j) + γ
· bj + β · k1·ωj + γ

bj + β · σ∗(j+n) + γ
· cj + β · k2·ωj + γ

cj + β · σ∗(j+2n) + γ

13 / 16

Permutation Check: How to Prove!

▶ Need to prove: z(ω) = 1

▶ Need to prove that for x ∈ {ω...ωn} we have that
z(xω) · ((a(x) + βSσ1(x) + γ)(b(x) + βSσ2(x) + γ)(c(x) + βSσ3(x) + γ))−
z(x) · ((a(x) + βx + γ) (b(x) + k1βx + γ) (c(x) + k2βx + γ)) = 0.

▶ Writing in the same format as other equations, we need to prove ∃T ′ such
thatz(xω) · ((a(x) + βSσ1(x) + γ)(b(x) + βSσ2(x) + γ)(c(x) + βSσ3(x) + γ))−
z(x) · ((a(x) + βx + γ) (b(x) + k1βx + γ) (c(x) + k2βx + γ)) = T ′(x)ZH(x)

▶ Prove by opening at a random point.

▶ Verifier Precomputes [Sσ1], [Sσ2], [Sσ3].

14 / 16

Making it non-interactive — Fiat-Shamir Heuristic

▶ Rather than the verifier specifying uniform values, obtain them by computing
H(transcript) where transcript is the current value of all the messages so far.

15 / 16

Final Notes

▶ Interoperatability among implementations: Presentation is a simplified version of the
construction from the PlonK paper. https://eprint.iacr.org/2019/953.pdf

▶ Security proofs are brittle: Small changes in the scheme can affect security. Be careful
when you depart from specifications.

16 / 16

	Introduction

