CS171: Cryptography

Lecture 22

Sanjam Garg

1/16

Plan for today

» Succinct Arguments.

2/16

Succinct Non-Interactive Argument System (SNARG)

Pre-processing
depending only on
Srs, X, w Clx,w)=1 srs, X C,srs and takes

/ time poly(|C|, srs)

structured Verification time is
reference il < |C|
string v || < [C]| .

=

7 could be zero-

knowledge or not Prover Verifier

» Completeness: An honest prover should be able to convince an honest verifier with
overwhelming probability.

» Soundness: A PPT cheating prover cannot generate an accepting proof for a false
statement.

» Zero-Knowledge: The proof doesn't leak any information about the witness w.

» Not all applications need zero knowledge, e.g. zk-rollups.
3/16

Polynomial Commitment

» P can commit to some polnomial f of some ia priori fixed maximum degree.
> We denote the commitment to f by [f].

» The commiter can open [f] at any input r and prove that the provided opening f(r) is
correct with respect to the previously provided commitment [f].

4/16

Check the roots of a polynomial

Vx e H,f(x)=0
1.7] Sample r + F
a
Cfc(>mpute q(x Challenge r
X ‘ 7
ZH(X 0 p Outputs f(r) =
pen f(r) and qg(r) %
q(r) - Zu(r).
Prover Verifier

f(x) # 0.

> H={w,w?...w"}.

» Zh(x) = [Toenx —a) =x" - 1.

» Zy(r) = r" — 1 can be computed efficiently in O(log n) time using the repeated squaring
algorithm.

5/16

Check relationship between two polynomials (Example)
Vx e H,f(x)=2-g(x)

fl,lgl. f f,
ne e al [ﬂg

(f:(ompute alx Challenge Outputs f(r) —

I Open f(r), g(r), q(r) 2g(r) < q(r) -
Prover Verifier Zu(r).

> H={ww?.. w"}.

» Zh(x) = [Taen(x —a) =x" - 1.

» f(x) is a polynomial such that for each w' € H, f(w') =2 1.

» g(x) is a polynomial such that for each w' € H, g(w') = i.

» As polynomials f(x) # 2g(x).

» Zy(r) =r" — 1 can be computed efficiently in O(log n) time using the repeated squaring

algorithm.

6/16

Check two multisets A and B are the same
{Vx e H,f(x)} ={v¥x e H,g(x)}

Set z(x) such that
;El{iﬂ o}, 2([f],lel. f. & Ch;\zll]erfj]ew (7], [] W‘
e Challenge r ’% Outputs
q(x) = y z(w) = 1 and
z(xw)(g(x)-%—gj(—xi(x)(f(x)-f—'y) Open z(w), z(r), z(rw) < 2(r)(g(r) +
Prover Open £(r), g(r), q(r) Verifier v) —z(r)(f(r) +
7) £ a(r)-Zu(r)

A={a1,...ap} and B = {by,...bp}.

f(x) is a polynomial such that for each w' € H, f(w') = a;.

g(x) is a polynomial such that for each w’ € H, g(w') = b;.

As polynomials f(x) # g(x).

Note that z(w) = z(w™") = 1. And we have that Vi € 1,...n, z(w'*!) = z(w') - 52
Prove: (i) z(w) =1, and (ii) Vx € H we have that z(xw)(g(x) +) — z(x)(f(x) +7) = 0.

vyVvvyVvyVvVyy

7/16

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that o(ay...a,) = (b1...b,)?
» o) : F" — F" as a function that permuates the input vector.
> @ {1,...n} = {1,... n} as a function that maps input index to output index of the
permuatation.
» oB) : H— H as a polynomial that maps w' to w?” ().
> For the identity permutation: o()(x) = x.
> Will refer to o, 6@, and ¢ as just & when clear from context.

8/16

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that o(ay...a,) = (b1...b,)?
f(x) and g(x) are such that Vw' € H, f(w') = a; and g(w') = b;.
Pre-Processing Step: P and V generate [0] - commitment to o in the pre-processing step.

How to test?

» For verifier chosen 3,7 consider polynomial z (that Prover commits) such that for all

i€{l,..n}

i1 ;

2w = [T 220D 0
i1 bj +pB-w 4+~
w" — ,,n+1
» Verifier checks that (i) z(w) =1, and (ii) for all x € H we have Ww=w
that 20w) _ atBo(ty w?
z(x) bi+B-x+y -

> Note that z(w"™!) = z(w) = 1. (Only need to prove once!)

» Prove that ¥x € H we have that z(x - w) - (g(x) + 8- x+7)
—z(x) - (f(x) + 8- o(x) +7) = 0.

9/16

B
o(f(w)...f(w") = (g(w)...g(w")

Prove that o(A)

Set z(x) such that

Vi€ (1. n},2(w) = [f], [g]. f. g, o] Challenge 3,~ (7], [g]. o] Samole r — T
HI 1 aj+60()+'Y [2]7[q] T‘

=L bHBwity -~ Outputs
z(w) < 1and
< ;(rfi)(g)(r) +
Open f(r),g(r),q(r),o(r Py r+—7) —
Prover P (r). &(r), q(r), o(r) Verifier 2(r)(F(r) + 7
po(r) +v) =
q(r) - Zu(r).

Challenge r

a(x) =
(gl)21 (o ()) \ Open z(w), z(r), z(rw)
H(x

> Note that z(w) z(w™1') = 1. And we have that
Viel,...nzw*) = z(w)- 73":?;8‘2:7.
> Prove: () () =1, and (ii) Vx € H we have that

z(xw)(g(x) + Bx +7) = 2(X)(f(x) + fo(x) +7) = 0.

10/16

PlonkC Arithmetization

C(x,w) =1 be a circuit of n gates, where each gate is fan-in 2 and support + and x gates.

Simplifying setting:

» Ignore zero-knowledge.

» Assume a polynomial commitment scheme (e.g. KZG) — use [f] notation as commitment

of f.

» Simplify construction — ignore optimizations.
For the it" gate in the circuit we have a constraint on input wires values a;, b; and output wire
value ¢; specified by constants q; , r.i, 90,i, GMm,i> 9c,i:

qui-ai+qri-bi+qoi-ci+qui-ai-bi+qci=0

+ gate then q1;,9r; = 1,90, = —1 and gm,; = gc,; = 0.
x gate then q;;,qr,i =0, qo,; = —1 and gum,; = 1, q¢,; = 0.

qu(x) = Z qri - 0i(x),

where 0;(x) =1 for x =i and 0 for x € H\{i}.
Constraint Checks: Given H C F, |H| = n, define degree-n — 1 polynomial g;(x) such that for 11,1

Constraint Check: How to Prove!

Constraint Check: Prove that for all x € {0,...n — 1} we have:

qu(x) - a(x) + qr(x) - b(x) + go(x) - ¢(x) + qum(x) - a(x) - b(x) + (gc(x) — PI(x)) = 0
How to test?
» The above is only true if there exists a quotient polynomial T(x) such that

q(x)-a(x)+qr(x)-b(x)+qo(x)- c(x)+aqum(x)-a(x)-b(x)+(qc(x) = PI(x)) = T(x)- Zu(x).

> |t suffices for the verifier to check the following at a random point 3 € F:

q.(3)-a(3) +qr(3) - b(3) +q0(3) - c(3) + qm(3) - a(3) - b(3) + (ac(3) — PI(3)) = T(3) - Zn(3),

where the verifier can compute Zy(3) locally.

» Or, prover commits to a(x), b(x), c(x) and T(x) and opens 3 = a(3), b = b(3),c = c(3)
and T (3) for a verifier chosen 3.

> Problem: But degree of T(x) is large. So, commit to degree-n — 1 Tj,, Tpnig, Tpi such that
Tio(X) + Tmig(x) - X" + Thi(x) - x?" = T(x).

> |t suffices to prove that the following polynomial is 0 for x = 3:

gu(x) -3+ qr(x) - b+qo(x) - €+ qu(x) -a- b+ (qc(x) — PI(3))
T (o) L T (o) Al T)220 L 7 () — 0 12/16

Permutation Check: How to Prove!

» For a circuit dependent permutation ¢ : [3n] — [3n] we need to prove
o(ai,...an, b1, ...by, c1,...cp) = (a1, ...an, by, ...bp, c1, ...Cp).
w() if o(i) € {1...n}
» Define 0*(i) = < ki -w?@ if o(i) € {n+1..2n}
ky - w0 if o(i) € {2n +1...3n}
» For c € {1,2,3}, S, S, be functions/polynomials {w?!,...w"} — H" where
H = HU (ky - H)U (ko - H) and where ki, ko € TF are such that H, kyH, kyH give 3n
distinct elements.

X c=1 o*(i) for c =1 on input X = w'
Se(X) =< kX c=2, See(X)=q0*(i+n) forc=2oninput X =o'
kX c=3 o*(i+2n) for c =3 on input X = '

> Same as before, we define z(w) =1 and for all i € {2,...n}

T g+ B)y b8 o)ty B0t (2 +y

z(w')

13/16

Permutation Check: How to Prove!

> Need to prove: z(w) =1
> Need to prove that for x € {w...w"} we have that
z(xw) - ((a(x) + BSe1(x) +7)(b(x) + BSe2(x) +7)(c(x) + BSe3(x) + 7)) =
z(x) - ((a(x) + Bx +) (b(x) + kiBx +7) (c(x)+ kaBx + 7)) = 0.
» Writing in the same format as other equations, we need to prove 3T’ such
thatz(xw) - ((a(x) + 8501(x) + 7)(b(x) + BSo2(x) + 7)(c(x) + BSo3(x) +7))—
z(x) - ((a(x) + Bx +7) (b(x) + kifx +7) (c(x)+ kefBx + 7)) = T'(x)Zn(x)
» Prove by opening at a random point.
» Verifier Precomputes [S,1], [So2], [So3].

14/16

Making it non-interactive — Fiat-Shamir Heuristic

» Rather than the verifier specifying uniform values, obtain them by computing
H(transcript) where transcript is the current value of all the messages so far.

15/16

Final Notes

> Interoperatability among implementations: Presentation is a simplified version of the
construction from the PlonfC paper. https://eprint.iacr.org/2019/953.pdf

> Security proofs are brittle: Small changes in the scheme can affect security. Be careful
when you depart from specifications.

16/16

	Introduction

