CS 171 - Cryptography

Sanjam Garg

Lecture 23

(t,n)—Threshold Secret Sharing

» A (t,n) threshold secret sharing scheme allows one to split a
secret s into n pieces so that one will need at least ¢ shares to
reconstruct s.

P> A dealer takes s as input and uses a sharing algorithm to split
the secret s into parts s;1...s, to be given parties P;,... F,.

o
a)/w/j \1!'

Corrupt < ¢
&D No-reconstruct

S; Sn

Aggregate > t shares

(= =) :

» Correctness: Any t parties can reconstruct s.

» Security: No collusion of < t parties can reconstruct s.

(tvn)_

Threshold Secret Sharing

A (t,n)-secret sharing scheme (Share, Reconstruct) is defined as
follows.

» Share(s): On input a secret s it outputs shares s1, ... Sy.
» Reconstruct({s; }icr): Outputs s or L.
» Correctness: For any T such that |T'| > t and secret s we have

| 2

(272)_

v

v

that Reconstruct({s; }ier) = s.
Security: For any T such that |T'| < ¢, secrets s, s’ and
adversary A we have that p = p’ where

p = PrlA({sitier) = 1] (s1,...5n) < Share(s)],
p' = PrlA({si}ier) = 1] (s},...s),) < Share(s')].

Threshold Secret Sharing

Let s € {0,1}™. How do we (2, 2)-secret share s7
Share(s) : Sample r < {0, 1} and output s; = r and
So=8Dr.

Reconstruct(sy, s2): Outputs s; @ sa.

Correctness: By constrcution, s = s1 @ sa.

Security: For any s, each individual s or so is uniformaly
random. Thus, p = p’ = g where:

qg=Pr[A(r)=1|r«+ {0,1}™].

(n,n)— Threshold Secret Sharing

v

vy

(37 3)_

v

v

Let s € {0,1}"™. How do we (n,n)-secret share s?

Share(s) : Sample r1...7,—1 « {0,1}"™ and output s; = r1,
89 =179...8,-1="7"p—1and s, = s @?:—11 ;.

Reconstruct(sy, s2 ... sp): Outputs &, s;.

Correctness: By constrcution, s = @I s;.

Security: For any s, T such that |T'| < n, {s;}ier is uniformaly

random. Thus, p = p’ = ¢ where:

q = PT[A({T}}) =1 ‘ T1.. 'T|T| — {O, 1}m}

Threshold Secret Sharing

Let s € {0,1}"™. How do we (3, 3)-secret share s7

Share(s) : Sample ry, 72 <— {0,1}" and output

§1=71,50 =19 and s3 =sPr; Dro.

Reconstruct(sy, $2, s3): Outputs s1 @ so D s3.

Correctness: By construction, s = s1 @ so @ s3.

Security: For any s, s;, s; for any i,j € {1,2,3} are uniformaly
random. Thus, p = p’ = g where:

q= Pr[A(ri,r2) = 1] ry,r2 < {0,1}™].

(273)_

Threshold Secret Sharing

Let s € {0,1}"™. How do we (2, 3)-secret share s?

Share(s) : Sample r1,79 < {0,1}"™. Set r3 =s@® 1 & ry and
output s1 = (11,7r2), 82 = (re,73) and s3 = (r3,r1).
Reconstruct(s;, s;): Outputs r1 @ ro @ r3 where 71,72, 73 can
be recovered from s;, s;.

Correctness: By construction, s =11 ® 19 P r3.

Security: For any s, s; for any i € {1,2,3} is uniformaly
random. Thus, p = p’ = g where:

q= PT[A(T‘l,Tz) =1 | 71,72 < {07 1}m]

(2,n)—Threshold Secret Sharing

>

| 2

Let s € {0,1}"™. How do we (2,n)-secret share s (assume

n = 2F)?

Share(s) : Sample 71, ...7 < {0,1}™. For each i =iy ...1
and j = 1...k generate

Sijj =Tj

if i; =0 and as
Sij =T; DS

if i; = 1. Output s; = (sj1...5; k)

Reconstruct(s; = (si1...8ik), 8¢ = (S#1-..8irk)): Outputs
sij © sy j for a j such that i; # i’.

Correctness: This can be checked by construction.

Security: For any s, s; is uniformaly random vector of k strings.
Thus, p = p' = q where:

qg=Pr(A(r1,...m) =1|r1,...m < {0,1}""].

Can we build (¢, n)-secret sharing for any ¢, n such that
t<n?

Yes! Shamir's Secret Sharing Scheme.

Shamir's Secret Sharing: Background

» We consider a polynomials p(x) € Z,[x] where ¢ is a prime.

» p(x) is denoted as ag + ajx...azxt mod q. If a; # 0 then
p(x) has degree t.

» p(xz) = p/(x) if they have the same degree and agree on all
coefficients.

Theorem: Any two distinct degree-t polynomials agree on at
most t points.

» Proof: Suppose that p(z) # p/(z) and p(z;) = p/(z;) for
ie{l...t+1}

» Let q(z) = p(x) — p'(x). Then we have that ¢(z) is degree ¢
and g(x) =0 forall z € {z1... 241}

» However, ¢(x) is of degree <t and has t + 1 root.
Contradiction!

Shamir's Secret Sharing

Key idea:

> If we have t points of a polynomial of degree ¢t — 1, we can
reconstruct the polynomial. Moreover, the polynomial is
unique.

Theorem: Given ¢ distinct input/output points

(x1,21) - .- (x4, y¢), we can find in poly time the unique
degree-(t — 1) polynomial p(z), where p(x;) = y; for
ie{l...t}.

(t,n)—Shamir’s Secret Sharing

Main Idea: To share s € Z,: choose a random degree t — 1
polynomial p(x) such that p(0) = s. Give out the shares

(p(1),...,p(n)).

» Given t shares, we can reconstruct p(z), and can then recover
p(0).

Sharing:

> Given a secret s € Z,, choose p(z) = s+ a1x + ... a1t !
where a;'s are chosen randomly in Z,. Give out the shares

(p(1),...,p(n)).

Reconstruct:

» Given t values (i1,p(i1),...,(t,p(i;)), reconstruct p and
output p(0).

Practice Problem

» Given encryption schemes II; ... II, (where
II; = (Gen;, Enc;, Dec;)) such that at least ¢ of them are
CPA-secure. Construct an encryption scheme that is
CPA-secure.

(t, n)-Th reshold Signature [Desmedt'87, Desmedt-Frankel'89]

p Cqrrupt + PartialSig < ¢
& 5 cee éa cee w Unforgeability
Sk1 Sk2 Ski /ékn
2
* &
Aggregate > t signatures
@ 2 :

» A succinct (constant-size) public/verification key vk.
> Aggregated signatures o are succinct (constant-size).

> Widely used in blockchain applications.

BLS Signature [Boneh-Lynn-Shacham'01]
» s < Zg, vk = g°.
» Signature is 0 = H(msg)®.
» Verify signature: e(H(msg), vk) z e(o,9)

BLS Multisignature: n-out-of-n threshold signature

» Each party picks s; < Zg4, vk; = g*
» Partial signature o; = H(msg)*

2

e(H(msg),vki) = e(o1, g)

e(H(msg), vky) = (o, 9)

» Verification key aVK = [, vk;
» Aggregated Signature o =[], 0y

» Verify signature: e(H(msg), aVK) Z e(o,9)

BLS t-out-of-n threshold signature
» Generate s < Zg, vk = g¢°.
» vk is published, i*" party receives s;.
» sq,...,s, forms a t-out-of-n linear secret sharing of s.

In degree (t — 1)
—

12 n
Signing and Aggregation

» Signing: Partial signature o; = (H(msg))* for message msg.
» Linear secret sharing property: For any set T'C {1...n} such
that |T| >t we have constants {a! },cr such that
S=Yier & *Si-
» Given {0;};er compute 0 = H(msg)® as

H(msg)® = H(msg)2= "5 = [(H(msg)*)* =[] o}

i€l €T

