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Defining Secure Encryption: 
Formally
Definition 1: An encryption scheme (Gen, Enc, Dec) 
with message space M is perfectly secret if for every 
probability distribution over M, every message 𝑚 ∈ 
M, and every ciphertext c for which Pr[𝐶 = 𝑐] >  0:

Pr 𝑀 = 𝑚 𝐶 = 𝑐] = Pr[𝑀 = 𝑚]

Or, if for every two messages , 𝑚, 𝑚′ ∈ M, and every 
ciphertext c (in ciphertext space):

Pr[𝐸𝑛𝑐𝐾 𝑚 = 𝑐] = Pr[𝐸𝑛𝑐𝐾 𝑚′ = 𝑐] ,



Definition 3 (Game Style)

PrivKA,Π
eav 

1. A outputs 𝑚0 , 𝑚1 ∈ 
M.

2.  b  {0,1}, k  
Gen(), 𝑐  𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐 is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

Encryption scheme Π =
 (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) with 
message space M 

is perfectly 
indistinguishable if 

∀ 𝐴 it holds that:

Pr PrivKA,Π
eav = 1 =

1

2

Challenge 
ciphertext

A can always succeed with 
probability ½. How?

eav is for 
Eavesdropper

Lemma (Prove on your own): Encryption scheme Π is perfectly secret if 
and only if it is perfectly indistinguishable.



The One-Time Pad

Fix an integer ℓ, then let M, K, C = 0,1 ℓ 

• 𝐺𝑒𝑛: output a uniform value from K

• 𝐸𝑛𝑐𝑘 (𝑚): where 𝑚 ∈ 0,1 ℓ, output 𝑐 ∶=  𝑘 ⊕ 𝑚

• 𝐷𝑒𝑐𝑘(𝑐):  output 𝑚 ∶=  𝑘 ⊕ 𝑐

• Correctness: 𝐷𝑒𝑐𝑘 𝐸𝑛𝑐𝑘 𝑚 = 𝑘 ⊕ 𝑘 ⊕ 𝑚 = 𝑚

• Security:  ∀ 𝑚, 𝑐, Pr[𝐸𝑛𝑐𝐾 𝑚 = 𝑐] = 2−ℓ. Or, 
∀ 𝑚, 𝑚′ , 𝑐, Pr[𝐸𝑛𝑐𝐾 𝑚 = 𝑐] = Pr[𝐸𝑛𝑐𝐾 𝑚′ = 𝑐]



One-Time Pad: Good and Bad

• One-Time Pad achieves perfect security
• Been used in the past

• Not used anymore, why not?
1. The key is as long as the message

2. Can’t reuse the key 

3. Broken under known-plaintext attack



Can we make |M|>|K|?



Optimality of One-Time Pad

Theorem: If Π = (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) is a perfectly secret 
encryption scheme with message space M  and key 
space K,  then |M|≤|K|.

1. Assume |K|<|M| (will show that Π cannot be 
perfectly secret)

2. M 𝑐 = 𝑚 𝑚 =  𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ K}

3. |M 𝑐 | ≤ K

4. ∃𝑚′ ∈ M, 𝑚′ ∉ M(𝑐)

5. Pr[𝑀 =  𝑚’| 𝐶 = 𝑐 ]  =  0 ≠  Pr[𝑀 = 𝑚’]



Computational Security

• Relaxation of perfect security
• Security only against efficient adversaries

• Security can fail with some very small probability

• Two approaches
• Concrete security

• Asymptotic security



Concrete Security

• A scheme is 𝑡, 𝜖 -secure if for any adversary 
running for time at most t succeeds in breaking the 
scheme with probability at most 𝜖.

• Example: Consider an encryption scheme that is 
(2128 , 2−60) −secure.

• 280 is the computation that can be performed by 
super-computers in one year or so. 

• 2−60 is the probability that an event happens 
roughly once every 100 billion years



What’s wrong?

• Concrete security is essential in choosing scheme 
parameters in practice.

• However, it doesn’t yield clean theory
• Depends on the computational model

• Need to change schemes as 𝑡, 𝜖  need to be updated

• Need schemes that allow tuning 𝑡, 𝜖  as desired



Asymptotic Security

• Introduce a security parameter n (known to 
adversary)

• All honest parties run in polynomial time in n

• Security can be tuned by changing n
• t and 𝜖 are now functions of n
• 𝑡 -> probabilistic polynomial time (PPT) in n

• 𝜖 -> a negligible function in n



Polynomial and Negligible

• A function 𝑓:  𝑍
+

 → 𝑍
+

 is polynomial if there 
exists c such that 𝑓(𝑛)  <  𝑛𝑐 for large enough 𝑛

• A function 𝑓:  𝑍
+

 → [0,1] is negligible if ∀ 
polynomial 𝑝 it holds that 𝑓(𝑛)  <  1/𝑝(𝑛) for 
large enough 𝑛

• Typical example: 𝑓(𝑛)  =  𝑝𝑜𝑙𝑦(𝑛) ∙ 2−𝛼𝑛



Negligible Function (formally)

• A function 𝑓:  𝑍
+

 → [0,1] is negligible if ∀ 
polynomial 𝑝 it holds that ∃ 𝑁 ∈  𝑍+ ∀ 𝑛 >  𝑁 (for 
large enough 𝑛) we have 𝑓(𝑛)  <  1/𝑝(𝑛)
• ∀ 𝑝 ∃ 𝑁 ∈  𝑍+ ∀ 𝑛 >  𝑁, 𝑓(𝑛)  <  1/𝑝(𝑛)

• Prove that 2−𝑛 is a negligible function



Is this a negligible function?

• 𝑓(𝑛)  =  2−√𝑛

• 𝑓(𝑛)  =  𝑛−log 𝑛 

• 𝑓 𝑛 =  2−𝑛 for n mod 2 = 0

             = 𝑛−𝑐 for n mod 2 = 1



Choice of Polynomial and 
Negligible

• Using PPT for efficient machines is borrowed from 
complexity theory

• Also some nice closure properties:
• 𝑝𝑜𝑙𝑦 𝑛 ⋅  𝑝𝑜𝑙𝑦(𝑛) is still 𝑝𝑜𝑙𝑦(𝑛)

• 𝑝𝑜𝑙𝑦 𝑛 ⋅ 𝑛𝑒𝑔𝑙(𝑛) is still 𝑛𝑒𝑔𝑙(𝑛)



Concrete vs Asymptotic 

A scheme is 𝑡, 𝜖 -secure if for any adversary running 
for time at most t succeeds in breaking the scheme 
with probability at most 𝜖.

A scheme is secure if any PPT adversary succeeds in 
breaking the scheme with probability at most 
negligible.



Defining Computationally Secure 
Encryption (syntax)
• A private-key encryption scheme is a tuple of 

algorithms (Gen, Enc, Dec): 
• 𝐺𝑒𝑛(1𝑛): outputs a key k (assume |𝑘|  >  𝑛)

• 𝐸𝑛𝑐𝑘(m): takes key 𝑘 and message 𝑚 ∈ 0,1 ∗ as input; 
outputs ciphertext c 

𝑐  𝐸𝑛𝑐𝑘(𝑚)

• 𝐷𝑒𝑐𝑘 (c): takes key k and ciphertext c as input; outputs 
m or “error”
                    𝑚 ∶=  𝐷𝑒𝑐𝑘(𝑐)

Correctness: For all 𝑛, 𝑘 output by 𝐺𝑒𝑛(1𝑛), 𝑚 ∈ 0,1 ∗ 
it holds that 𝐷𝑒𝑐𝑘(𝐸𝑛𝑐𝑘(𝑚))  =  𝑚 



Computational Indistinguishability

PrivKA,Π
eav 

1. A outputs 𝑚0 , 𝑚1 ∈ 
M.

2.  b  {0,1}, k  Gen(   
), 𝑐  𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐 is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

Encryption scheme Π =
 (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) with 
message space M 

is perfectly 
indistinguishable if 

∀ 𝐴 it holds that:

Pr PrivKA,Π
eav = 1 ≤

1

2
 + negl(n)

(n)

0,1 ∗, 𝑚0 = |𝑚1|

(1𝑛 computationally

PPT

(n)

Does not hide message length! A scheme that only supports 
messages of fixed length is called a fixed-length encryption scheme.  



Distinguishing variant

PrivKA,Π
eav 

1. A outputs 𝑚0 , 𝑚1 ∈
0,1 ∗, 𝑚0 = |𝑚1|.

2.  b = d         , k  Gen(   
), 𝑐  𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐 is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

(n, d)

(1𝑛

Π is computationally 
indistinguishable if 

∀ 𝑃𝑃𝑇 𝐴 it holds that:

ቚ

ቚ

Pr outA PrivKA,Π
eav 1𝑛 , 1 = 1  −

Pr outA PrivKA,Π
eav 1𝑛 , 0 = 1 ≤ 

negl(n).

• Here, PrivKA,Π
eav 1𝑛, 𝑑  is 

same as PrivKA,Π
eav 1𝑛  

except that we set b = d.

The output of A is 

outA PrivKA,Π
eav 1𝑛 , 𝑑



Thank You!
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