
CS171: Cryptography
Lecture 3

Sanjam Garg

All Photos are by Unknown Author and are licensed under CC BY-SA

https://en.wikipedia.org/wiki/Auguste_Kerckhoffs
https://creativecommons.org/licenses/by-sa/3.0/

https://eecs171.com/

Email for Course Staff: cs171@berkeley.edu

Defining Secure Encryption:
Formally
Definition 1: An encryption scheme (Gen, Enc, Dec)
with message space M is perfectly secret if for every
probability distribution over M, every message 𝑚 ∈
M, and every ciphertext c for which Pr[𝐶 = 𝑐] > 0:

Pr 𝑀 = 𝑚 𝐶 = 𝑐] = Pr[𝑀 = 𝑚]

Or, if for every two messages , 𝑚, 𝑚′ ∈ M, and every
ciphertext c (in ciphertext space):

Pr[𝐸𝑛𝑐𝐾 𝑚 = 𝑐] = Pr[𝐸𝑛𝑐𝐾 𝑚′ = 𝑐] ,

Definition 3 (Game Style)

PrivKA,Π
eav

1. A outputs 𝑚0 , 𝑚1 ∈
M.

2. b  {0,1}, k 
Gen(), 𝑐  𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐 is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

Encryption scheme Π =
 (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) with
message space M

is perfectly
indistinguishable if

∀ 𝐴 it holds that:

Pr PrivKA,Π
eav = 1 =

1

2

Challenge
ciphertext

A can always succeed with
probability ½. How?

eav is for
Eavesdropper

Lemma (Prove on your own): Encryption scheme Π is perfectly secret if
and only if it is perfectly indistinguishable.

The One-Time Pad

Fix an integer ℓ, then let M, K, C = 0,1 ℓ

• 𝐺𝑒𝑛: output a uniform value from K

• 𝐸𝑛𝑐𝑘 (𝑚): where 𝑚 ∈ 0,1 ℓ, output 𝑐 ∶= 𝑘 ⊕ 𝑚

• 𝐷𝑒𝑐𝑘(𝑐): output 𝑚 ∶= 𝑘 ⊕ 𝑐

• Correctness: 𝐷𝑒𝑐𝑘 𝐸𝑛𝑐𝑘 𝑚 = 𝑘 ⊕ 𝑘 ⊕ 𝑚 = 𝑚

• Security: ∀ 𝑚, 𝑐, Pr[𝐸𝑛𝑐𝐾 𝑚 = 𝑐] = 2−ℓ. Or,
∀ 𝑚, 𝑚′ , 𝑐, Pr[𝐸𝑛𝑐𝐾 𝑚 = 𝑐] = Pr[𝐸𝑛𝑐𝐾 𝑚′ = 𝑐]

One-Time Pad: Good and Bad

• One-Time Pad achieves perfect security
• Been used in the past

• Not used anymore, why not?
1. The key is as long as the message

2. Can’t reuse the key

3. Broken under known-plaintext attack

Can we make |M|>|K|?

Optimality of One-Time Pad

Theorem: If Π = (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) is a perfectly secret
encryption scheme with message space M and key
space K, then |M|≤|K|.

1. Assume |K|<|M| (will show that Π cannot be
perfectly secret)

2. M 𝑐 = 𝑚 𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ K}

3. |M 𝑐 | ≤ K

4. ∃𝑚′ ∈ M, 𝑚′ ∉ M(𝑐)

5. Pr[𝑀 = 𝑚’| 𝐶 = 𝑐] = 0 ≠ Pr[𝑀 = 𝑚’]

Computational Security

• Relaxation of perfect security
• Security only against efficient adversaries

• Security can fail with some very small probability

• Two approaches
• Concrete security

• Asymptotic security

Concrete Security

• A scheme is 𝑡, 𝜖 -secure if for any adversary
running for time at most t succeeds in breaking the
scheme with probability at most 𝜖.

• Example: Consider an encryption scheme that is
(2128 , 2−60) −secure.

• 280 is the computation that can be performed by
super-computers in one year or so.

• 2−60 is the probability that an event happens
roughly once every 100 billion years

What’s wrong?

• Concrete security is essential in choosing scheme
parameters in practice.

• However, it doesn’t yield clean theory
• Depends on the computational model

• Need to change schemes as 𝑡, 𝜖 need to be updated

• Need schemes that allow tuning 𝑡, 𝜖 as desired

Asymptotic Security

• Introduce a security parameter n (known to
adversary)

• All honest parties run in polynomial time in n

• Security can be tuned by changing n
• t and 𝜖 are now functions of n
• 𝑡 -> probabilistic polynomial time (PPT) in n

• 𝜖 -> a negligible function in n

Polynomial and Negligible

• A function 𝑓: 𝑍
+

 → 𝑍
+

 is polynomial if there
exists c such that 𝑓(𝑛) < 𝑛𝑐 for large enough 𝑛

• A function 𝑓: 𝑍
+

 → [0,1] is negligible if ∀
polynomial 𝑝 it holds that 𝑓(𝑛) < 1/𝑝(𝑛) for
large enough 𝑛

• Typical example: 𝑓(𝑛) = 𝑝𝑜𝑙𝑦(𝑛) ∙ 2−𝛼𝑛

Negligible Function (formally)

• A function 𝑓: 𝑍
+

 → [0,1] is negligible if ∀
polynomial 𝑝 it holds that ∃ 𝑁 ∈ 𝑍+ ∀ 𝑛 > 𝑁 (for
large enough 𝑛) we have 𝑓(𝑛) < 1/𝑝(𝑛)
• ∀ 𝑝 ∃ 𝑁 ∈ 𝑍+ ∀ 𝑛 > 𝑁, 𝑓(𝑛) < 1/𝑝(𝑛)

• Prove that 2−𝑛 is a negligible function

Is this a negligible function?

• 𝑓(𝑛) = 2−√𝑛

• 𝑓(𝑛) = 𝑛−log 𝑛

• 𝑓 𝑛 = 2−𝑛 for n mod 2 = 0

 = 𝑛−𝑐 for n mod 2 = 1

Choice of Polynomial and
Negligible

• Using PPT for efficient machines is borrowed from
complexity theory

• Also some nice closure properties:
• 𝑝𝑜𝑙𝑦 𝑛 ⋅ 𝑝𝑜𝑙𝑦(𝑛) is still 𝑝𝑜𝑙𝑦(𝑛)

• 𝑝𝑜𝑙𝑦 𝑛 ⋅ 𝑛𝑒𝑔𝑙(𝑛) is still 𝑛𝑒𝑔𝑙(𝑛)

Concrete vs Asymptotic

A scheme is 𝑡, 𝜖 -secure if for any adversary running
for time at most t succeeds in breaking the scheme
with probability at most 𝜖.

A scheme is secure if any PPT adversary succeeds in
breaking the scheme with probability at most
negligible.

Defining Computationally Secure
Encryption (syntax)
• A private-key encryption scheme is a tuple of

algorithms (Gen, Enc, Dec):
• 𝐺𝑒𝑛(1𝑛): outputs a key k (assume |𝑘| > 𝑛)

• 𝐸𝑛𝑐𝑘(m): takes key 𝑘 and message 𝑚 ∈ 0,1 ∗ as input;
outputs ciphertext c

𝑐  𝐸𝑛𝑐𝑘(𝑚)

• 𝐷𝑒𝑐𝑘 (c): takes key k and ciphertext c as input; outputs
m or “error”
 𝑚 ∶= 𝐷𝑒𝑐𝑘(𝑐)

Correctness: For all 𝑛, 𝑘 output by 𝐺𝑒𝑛(1𝑛), 𝑚 ∈ 0,1 ∗
it holds that 𝐷𝑒𝑐𝑘(𝐸𝑛𝑐𝑘(𝑚)) = 𝑚

Computational Indistinguishability

PrivKA,Π
eav

1. A outputs 𝑚0 , 𝑚1 ∈
M.

2. b  {0,1}, k  Gen(
), 𝑐  𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐 is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

Encryption scheme Π =
 (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) with
message space M

is perfectly
indistinguishable if

∀ 𝐴 it holds that:

Pr PrivKA,Π
eav = 1 ≤

1

2
 + negl(n)

(n)

0,1 ∗, 𝑚0 = |𝑚1|

(1𝑛 computationally

PPT

(n)

Does not hide message length! A scheme that only supports
messages of fixed length is called a fixed-length encryption scheme.

Distinguishing variant

PrivKA,Π
eav

1. A outputs 𝑚0 , 𝑚1 ∈
0,1 ∗, 𝑚0 = |𝑚1|.

2. b = d , k  Gen(
), 𝑐  𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐 is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

(n, d)

(1𝑛

Π is computationally
indistinguishable if

∀ 𝑃𝑃𝑇 𝐴 it holds that:

ቚ

ቚ

Pr outA PrivKA,Π
eav 1𝑛 , 1 = 1 −

Pr outA PrivKA,Π
eav 1𝑛 , 0 = 1 ≤

negl(n).

• Here, PrivKA,Π
eav 1𝑛, 𝑑 is

same as PrivKA,Π
eav 1𝑛

except that we set b = d.

The output of A is

outA PrivKA,Π
eav 1𝑛 , 𝑑

Thank You!

	Default Section
	Slide 1: CS171: Cryptography
	Slide 2
	Slide 3: Defining Secure Encryption: Formally
	Slide 4: Definition 3 (Game Style)
	Slide 5: The One-Time Pad
	Slide 6: One-Time Pad: Good and Bad
	Slide 7: Can we make |M|>|K|?
	Slide 8: Optimality of One-Time Pad
	Slide 9: Computational Security
	Slide 10: Concrete Security
	Slide 11: What’s wrong?
	Slide 12: Asymptotic Security
	Slide 13: Polynomial and Negligible
	Slide 14: Negligible Function (formally)
	Slide 15: Is this a negligible function?
	Slide 16: Choice of Polynomial and Negligible
	Slide 17: Concrete vs Asymptotic
	Slide 18: Defining Computationally Secure Encryption (syntax)
	Slide 19: Computational Indistinguishability
	Slide 20: Distinguishing variant
	Slide 21: Thank You!

