
CS171: Cryptography
Lecture 7

Sanjam Garg

All Photos are by Unknown Author and are licensed under CC BY-SA

https://en.wikipedia.org/wiki/Auguste_Kerckhoffs
https://creativecommons.org/licenses/by-sa/3.0/

Under the hood

This Photo by Unknown Author i s licensed under CC BY-SA-NC

https://www.flickr.com/photos/idea313/346318198/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Approach – Stream Ciphers/Block
Ciphers
• Heuristic

• no lower level assumptions

• Formal Definitions Help

• Clear Design Principles

Stream Ciphers

Stream Ciphers

• Init algorithm
• Input: a key and an optional initialization vector (IV)

• Output: initial state

• GetBits algorithm
• Input: the current state

• Output: next bit and updated state

• Multiple executions allow for generation of desired
number of bits

Stream Ciphers

• Use (Init, GetBits) to generate the desired number
of output bits from the seed

Init

𝑠𝑡0 GetBits 𝑠𝑡1 𝑠𝑡2GetBits

𝑦1 𝑦2

𝑠 𝐼𝑉

Security

• Without IV: For a uniform key, output of GetBits
should a pseudorandom stream of bits

• With IV: : For a uniform key, and uniform IVs
(available to the attacker), output of GetBits should
be pseudorandom streams of bits (weak PRF)

Security

• We care about concrete security and not just
asymptotic security

• Efficiency: Keys of length 𝑛 should give security
against adversaries running in time ≈ 2𝑛 .

LFSRs (Linear Feedback Shift
Register)
• Degree-𝑛 LFSR has 𝑛 registers

• 𝑠𝑛−1 … 𝑠0 are the contents of the registers

• 𝑐𝑛−1 … 𝑐0 are the feedback coefficients

• Registers updated in each clock cycle
𝑠𝑛−1

′ = ∑𝑐𝑗𝑠𝑗 𝑚𝑜𝑑 2
𝑠𝑖

′ = 𝑠𝑖+1 for 𝑖 < 𝑛 − 2

LFSR

• 0100

• 1010 -> 0

• 0101 -> 0

• 0010 -> 1

Quest for a good LFSR

• Intuitively: Should cycle all 2𝑛 − 1 non-zero states.

• It is known how to set the feedback coefficients to
get such an LFSR (also called maximum length LFSR)

• Max length LFSR has good statistical properties but
is not cryptographically secure

Can you see an
attack?

Output bits will
start to repeat

for short cycles.

Attacks on LFSR

• If the feedback coefficients are fixed (and known to
the attacker),

 then the first 𝑛 output bits fix the key entirely.

• If the feedback coefficients are unknown (and
derived from the key),

 then the first 2𝑛 output bits fix the key and the
coefficients. (linear algebra is very powerful)

• Lesson: linearity is bad for pseudorandomness

Non-linear FSR

• Adding non-linearity
• Make the feedback non-linear

• Make the output non-linear

• Use multiple LFSRs

• Mix the above methods.

• Allow for long-cycle and preserve the statistical
properties.

Non-linear Feedback

𝑠3 𝑠2 𝑠1 𝑠0𝑠4

• Is it secure?

• Linear-algebra is not useful!

• However, AND biases the bits!

• How can we fix this?

Non-linear Feedback (avoiding
bias)

• Use of xor helps remove bias!

𝑠3 𝑠2 𝑠1 𝑠0𝑠4



Non-linear output

• Update of the LFSR state is linear but the output is
obtained as a non-linear function of the state

𝑠3 𝑠2 𝑠1 𝑠0𝑠4

  Again: we have
a bias!

Non-linear Output (avoiding bias)

𝑠3 𝑠2 𝑠1 𝑠0𝑠4

 



Trivium

• Designed by De Cannière and Preneel in 2006 as
part of eSTREAM competition

• Designed for efficiency in hardware

• No attacks better than brute-force search are
known!

Trivium
93

111

84

Key 80 bits

IV 80 bits

Set everything else to 0, except the last three
registers (of the last FSR) which are set to 1.
Then, initialize by executing for 4 ⋅ 288 times
and discarding the output bits.

RC4

• Designed in 1987

• Designed for efficiency in software, rather than
hardware

• No longer considered secure, but still interesting to
study
• Simple description; not LFSR-based

• Still encountered in practice (WEP 802.11)

• Interesting attacks

RC4

Set 𝑆[𝑖] to be the identity
permutation of

{0 … 255}.

Repeat the key to make it
256 byte long.

Each entry of 𝑆 is swapped
with another

pseudorandom entry of 𝑆.

One pseudorandom swap
and obtain information for
a pseudorandom location.

RC4 used with an initialization
vector
• Was not designed for that.

• Set key to be 𝑘 = 𝐼𝑉||𝑘′

Attack: Biased 2nd output byte

• Let 𝑆𝑡 denote the state of array 𝑆 after 𝑡
executions.

• Say 𝑆0 is uniform for simplicity

• Thus, 𝑆0 2 = 0 and 𝑆0 1 = 𝑋 ≠ 2 happens with

probability
1

256
⋅ 1 −

1

256
≈

1

256
.

After 1 step, 𝑖 = 1, 𝑗 = 𝑋
and 𝑆1[𝑋] = 𝑋.

After 2 step, 𝑖 = 2, 𝑗 = 𝑋
and 𝑆2[𝑋] = 0. 𝑡 = 𝑋

𝑆1[𝑡] = 0

Probability 2nd
output byte is 0
is ≈ 1/256 +

 1/256

More attacks

• Already enough to break EAV-security

• More serious attacks when IV is used

• Attacks can recover keys in WEP

Block Ciphers

Block Ciphers: Recall

• Keyed Permutation
𝐹: 0,1 𝑛 × 0,1 ℓ → 0,1 ℓ

• 𝑛 is the key length and ℓ is the block length

• Security: 𝐹 should be indistinguishable from a
uniform permutation over 0,1 ℓ.
• Typically, want strong security.

• Interested in concrete security. For key of length 𝑛,
security is desired against attacker running in time
2𝑛.

Challenge involved

• 𝐹 should be indistinguishable from a uniform
permutation over 0,1 ℓ.

• If inputs 𝑥 and 𝑥′ differ in one bit then what
relation between 𝐹𝑘(𝑥) and 𝐹𝑘(𝑥′) can we expect?
• How many bits do we expect to change?

• Which bits do we expect to change?

Confusion-Diffusion

• Confusion:
• Small change in input should result in local random

change in output

• Diffusion:
• Local change in output should be propagated to entire

output

Design Paradigms
• Substitution-permutation networks (SPNs)

• Feistel networks

Substitution-permutation
networks
• Build random-looking permutations on long inputs

from random permutations on short inputs

• E.g. Assuming 8-byte block length,
 𝐹𝑘 𝑥 = 𝑓𝑘1

𝑥1 𝑓𝑘2
𝑥2 … 𝑓𝑘8

(𝑥8)
where each f is a random permutation on 0,1 8

• Is this a PRP?

• No!

• This has confusion but no diffusion
The key for 𝐹

is already
very big!

Adding Mixing

• 𝐹𝑘 𝑥 = 𝑀𝑖𝑥(𝑓𝑘1
𝑥1 𝑓𝑘2

𝑥2 … 𝑓𝑘8
(𝑥8)) where 𝑀𝑖𝑥 is a

public function.

• This allows for diffusion of the ̀ `propagation of changes”

• So far, given the key, the construction is invertible and hence
a permutation

. . .

Is this a PRP?

• Not really! Change in input by 1 bit only affects at
most 8 output bits.

• What if we repeat the construction (with
independent random permutations and a new
mixing permutations)?
• Avalanche effect

• What is the number of round needed?
• Carefully decided!

• Also the mixing permutations need to be carefully chosen!

Making the key smaller

• Using random permutations to start with is not
practical.

• Key Mixing: Set 𝑥 ∶= 𝑥 ⊕ 𝑘 where 𝑘 is the key

• Substitution: Set 𝑥: = 𝑆1 𝑥1 … 𝑆8 𝑥8 , where 𝑥𝑖 is
the 𝑖-th byte of 𝑥.

• Permutation: Permute the bits of 𝑥 to obtain the
output.

Add Mixing Permutation

Public Mixing
Permutation!

Invertible!

Replace
Random

permutations
with S-boxes!

Repeat with S-boxes

Key Mixing

Passing through S-boxes
(Substitution Boxes)

Mixing Permutation

S-boxes and mixing
designed with the goal

of allowing for an
Avalanche effect.

Avalanche effect: Design
Principles
• S-boxes and mixing designed simultaneously

• Small differences should eventually propagate to entire
output

• S-boxes: any 1-bit change in input causes at least 2-
bit change in output
• Not so easy to ensure!

• Mixing permutation
• Each bit output from a given S-box should feed into a

different S-box in the next round

SPNs

• An 𝑟-round SPN has 𝑟-rounds of
• Key-mixing

• S-boxes

• Mixing permutation

• One additional key-mixing is done at the last step

• Why?

• Without the final key-mixing the last round is
invertible!

Invertibility and Strong PRP

• Regardless of the number of rounds, it is efficient
to invert given the keys.

• Also, S-boxes and mixing permutations are
designed such that the avalanche effect applies
even when inverting. Thus, we get strong PRPs.

Attacking 1-Round SPN (no output
key mixing)
• One Round SPN

• Find 𝑘 given 𝑥, 𝑦, where 𝑦 = 𝐹𝑘(𝑥)?

• 𝑘 = 𝑥 ⊕ 𝑧

Compute 𝑧

Thank You!

	Slide 1: CS171: Cryptography
	Slide 2: Under the hood
	Slide 3: Approach – Stream Ciphers/Block Ciphers
	Slide 4: Stream Ciphers
	Slide 5: Stream Ciphers
	Slide 6: Stream Ciphers
	Slide 7: Security
	Slide 8: Security
	Slide 9: LFSRs (Linear Feedback Shift Register)
	Slide 10: LFSR
	Slide 11: Quest for a good LFSR
	Slide 12: Attacks on LFSR
	Slide 13: Non-linear FSR
	Slide 14: Non-linear Feedback
	Slide 15: Non-linear Feedback (avoiding bias)
	Slide 16: Non-linear output
	Slide 17: Non-linear Output (avoiding bias)
	Slide 18: Trivium
	Slide 19: Trivium
	Slide 20: RC4
	Slide 21: RC4
	Slide 22: RC4 used with an initialization vector
	Slide 23: Attack: Biased 2nd output byte
	Slide 24: More attacks
	Slide 25: Block Ciphers
	Slide 26: Block Ciphers: Recall
	Slide 27: Challenge involved
	Slide 28: Confusion-Diffusion
	Slide 29: Design Paradigms
	Slide 30: Substitution-permutation networks
	Slide 31: Adding Mixing
	Slide 32: Is this a PRP?
	Slide 33: Making the key smaller
	Slide 34: Add Mixing Permutation
	Slide 35: Repeat with S-boxes
	Slide 36: Avalanche effect: Design Principles
	Slide 37: SPNs
	Slide 38: Invertibility and Strong PRP
	Slide 39: Attacking 1-Round SPN (no output key mixing)
	Slide 40: Thank You!

