CS17/1: Cryptography

Lecture 7

Sanjam Garg

https://en.wikipedia.org/wiki/Auguste_Kerckhoffs
https://creativecommons.org/licenses/by-sa/3.0/

Under the hood

This PhotobyUnknown Authoris licensed under CCBY-SA-NC

https://www.flickr.com/photos/idea313/346318198/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Approach — Stream Ciphers/Block
Ciphers

* Heuristic
* no lower level assumptions

* Formal Definitions Help
* Clear Design Principles

Stream Ciphers

Stream Ciphers

* Init algorithm
* Input: a key and an optional initialization vector (1V)
e Output: initial state

e GetBits algorithm
* Input: the current state
* Output: next bit and updated state

* Multiple executions allow for generation of desired
number of bits

Stream Ciphers

* Use (Init, GetBits) to generate the desired number
of output bits from the seed

1V

f
|

St() > — Stl_' _— Stz o o

Security

* Without IV: For a uniform key, output of GetBits
should a pseudorandom stream of bits

 With IV: : For a uniform key, and uniform Vs
(available to the attacker), output of GetBits should
be pseudorandom streams of bits (weak PRF)

Security

* We care about concrete security and not just
asymptotic security

* Efficiency: Keys of length n should give security
against adversaries running in time = 2™,

' FSRs (Linear Feedback Shift
Register)

* Degree-n LFSR has n registers

* S,—1 ...Sg are the contents of the registers
* C,_1...Co are the feedback coefficients

* Registers updated in each clock cycle
Sp—1 = X,¢jSj mod 2
s; = Sj4q fori<n—2

LFSR

* 0100

*1010->0
* 0101->0
* 0010->1

Output bits will

Quest for a good LFSR for short cyles.
0@
* Intuitively: Should cycle all 2" — 1 non-zero states.

* It is known how to set the feedback coefficients to
get such an LFSR (also called maximum length LFSR)

* Max length LFSR has good statistical properties but
is not cryptographically secure

‘ ‘ ‘g

Canyou see an
S, S, S, So attack?

Attacks on LFSR L, |,

* If the feedback coefficients are fixed (and known to
the attacker),

then the first n output bits fix the key entirely.

* If the feedback coefficients are unknown (and
derived from the key),

then the first 2n output bits fix the key and the
coefficients. (linear algebra is very powerful)

* Lesson: linearity is bad for pseudorandomness

Non-linear FSR

* Adding non-linearity
* Make the feedback non-linear
* Make the output non-linear
* Use multiple LFSRs
* Mix the above methods.

* Allow for long-cycle and preserve the statistical
properties.

Non-linear Feedback

/_4

N

1S4 | S3

Sy

S1

e |s it secure?

* Linear-algebra is not useful!
* However, AND biases the bits!

e How can we fix this?

Non-linear Feedback (avoiding
bias)

P C I
A L‘—

1S4 | S3 | S2 | S1 | So

e Use of xor helps remove bias!

Non-linear output

* Update of the LFSR state is linear but the output is
obtained as a non-linear function of the state

/;\‘ DA
Again: we have
a bias!

Non-linear Output (avoiding bias)

—
—

Trivium

* Designed by De Canniere and Preneel in 2006 as
part of eSTREAM competition

* Designed for efficiency in hardware

 No attacks better than brute-force search are
known!

/Set everything else to 0, except the last three\

registers (of the last FSR) which are set to 1.
Then, initialize by executing for 4 - 288 times

Tr|V| u m Kand discarding the output bits. y
) 93 :
|
A (L T+

Key 80 bits

:;Hf 8% i W';'[

<

y
(=

IV 80 bits

111

A
v

RC4

* Designed in 1987

* Designed for efficiency in software, rather than
hardware

* No longer considered secure, but still interesting to
study
e Simple description; not LFSR-based
e Still encounteredin practice (WEP 802.11)
* Interesting attacks

Set S[i] to be the identity

permutation of

RC4 {0 ... 255},

One pseudorandom swap

and obtain information for
a pseudorandom location.
%LGUEITHM 6.1 ALGORITHNM 6.2
Init algorithm for RC4 GetBits algorithm for RC4
Input: 16-byte key k
(;lftlllmt: [nil‘ii:,l E?;te (S,i,7) Input: Current state (S.1.7)
(Note: All addition is done modulo 256) Output: Output byte y; updated state (S, 1,)
for i = 0 to 255: (Note: All addition is done modulo 256)
Sl = ¢ f:—itl
k[i] :== k[t mod 16] T Sl
ji=0 j:=73+ 8
for i = 0 to 255: Swap S[i] and S[_?]
j =3+ S[t] + k[z] t:= S[i| + S[y
Swap S|[i] and S|[j] y = S[[t]]]
=0, 7:=0 T o
return (5.1, 7) return (S,7,7).y

Repeat the key to make it [Each entry of S is swapped

with another

256 byte lone. pseudorandomentry of S.

RC4 used with an initialization
vector

* Was not designed for that.
* Setkeytobe k = IV||k’

Attack: Biased 2"? output byte

* Let S; denote the state of array S after ¢ CEELINES

. output byte is 0
executions. s~ 1/256 +

* Say S, is uniform for simplicity 1/256

* Thus, Sy[2] = 0and Sy|1] = X + ?'haﬂpens with

a1 1 1
probability pym (1 — 2—56) ~ 256‘.

ALGORITHNM 6.2
GetBits algorithm for RC4

| g After 1step,i=1,j =X
Input: Current state (S,7,7 —
Output: Output byte y; updated sta and Sl [X] = X.

(Note: All addition is done mod

i=i+41 i After 2step,i = 2,j = X
j =3+ Sl and S;[X]=0.t =X
Swap S[i] and S[j]

t := S[i] + S[y]
= S|t] _
i{eturn (S,4,7),u Sl[t] =0

More attacks

* Already enough to break EAV-security
* More serious attacks when IV is used
 Attacks can recover keys in WEP

Block Ciphers

Block Ciphers: Recall

* Keyed Permutation
F:{0,1}" x {0,1}* - {0,1}*

* nis the key length and £ is the block length

 Security: F should be indistinguishable from a
uniform permutation over {0,1}?.
* Typically, want strong security.

* Interested in concrete security. For key of length n,

security is desired against attacker running in time
2™,

Challenge involved

e I should be indistinguishable from a uniform
permutation over {0,1}*.

e If inputs x and x' differ in one bit then what
relation between F(x) and F,(x") can we expect?
 How many bits do we expect to change?
* Which bits do we expect to change?

Confusion-Diffusion

* Small change in input should result in local random
change in output

* Local change in output should be propagated to entire
output

Design Paradigms

e Substitution-permutation networks (SPNs)

e Feistel networks

Substitution-permutation
networks

* Build random-looking permutations on long inputs
from random permutations on short inputs

* E.g. Assuming 8-byte block length,
Fr(x) = fr, (x1)fk (x2) - Srg (X3)

where each fis a random permutation on {0,1}8

* |s thisa PRP? °
* No! ® O
. . . . The key for F
* This has confusion but no diffusion ifa.‘ilaﬁ;

very big!

Adding Mixing

* Fi(x) = Mix(fi, (1) fx,(x2) ... fi,(xg)) where Mix is a

public function.
| XN

* This allows for diffusion of the propagation of changes”

* So far, given the key, the constructionis invertible and hence
a permutation

s this a PRP?

* Not really! Change in input by 1 bit only affects at
most 8 output bits.

* What if we repeat the construction (with
independent random permutations and a new
mixing permutations)?

* Avalanche effect

e What is the number of round needed?

e Carefully decided!
* Also the mixing permutations need to be carefully chosen!

Making the key smaller

e Using random permutations to start with is not
practical.

* Key Mixing: Set x := x @ k where k is the key

* Substitution: Set x: = S;(x;) ... Sg(xg), where x; is
the i-th byte of x.

e Permutation: Permute the bits of x to obtain the
output.

Add Mixing Permutation

64-bit input j

64-bit sub-key @
ible!
[64-bit intermediate Invertible!
8 bits '8 b:tsl |8bzts| i8 b:tsl m m .
Replace
Random ((S \ Ss) @
permutations g @
with S-boxes! i abus 8 bits [8 bits) (8 bits) (8 bits
\\ // Public Mixing
64-bit intermediate o O . Permutation!

Procul

64-bit output

Repeat with S-boxes

input
X1
]

X16
I R .
- ETTEET L Key Mixing

| I I
S; So S3 I S4

;% Passing through S-boxes

Sub-key k; mixing =) (Substitution Boxes)

Mixing Permutation

round 3

S-boxes and mixing
designed with the goal
of allowing for an
Avalanche effect.

Avalanche effect: Design
Principles

e S-boxes and mixing designed simultaneously
* Small differences should eventually propagate to entire
output

* S-boxes: any 1-bit change in input causes at least 2-
bit change in output

* Not so easy to ensure!

* Mixing permutation

e Each bit output from a given S-box should feed into a
different S-box in the next round

SPNSs

* An r-round SPN has r-rounds of
* Key-mixing
* S-boxes
* Mixing permutation

* One additional key-mixing is done at the last step
* Why?

e Without the final key-mixing the last round is
invertible!

Invertibility and Strong PRP

* Regardless of the number of rounds, it is efficient
to invert given the keys.

* Also, S-boxes and mixing permutations are
designed such that the avalanche effect applies
even when inverting. Thus, we get strong PRPs.

Attacking 1-Round SPN (no output
key mixing)

* One Round SPN

Compute z

L 64-bit output J
* Find k given x,y, wherey = F; (x)?

ok = x& z

Thank You!

	Slide 1: CS171: Cryptography
	Slide 2: Under the hood
	Slide 3: Approach – Stream Ciphers/Block Ciphers
	Slide 4: Stream Ciphers
	Slide 5: Stream Ciphers
	Slide 6: Stream Ciphers
	Slide 7: Security
	Slide 8: Security
	Slide 9: LFSRs (Linear Feedback Shift Register)
	Slide 10: LFSR
	Slide 11: Quest for a good LFSR
	Slide 12: Attacks on LFSR
	Slide 13: Non-linear FSR
	Slide 14: Non-linear Feedback
	Slide 15: Non-linear Feedback (avoiding bias)
	Slide 16: Non-linear output
	Slide 17: Non-linear Output (avoiding bias)
	Slide 18: Trivium
	Slide 19: Trivium
	Slide 20: RC4
	Slide 21: RC4
	Slide 22: RC4 used with an initialization vector
	Slide 23: Attack: Biased 2nd output byte
	Slide 24: More attacks
	Slide 25: Block Ciphers
	Slide 26: Block Ciphers: Recall
	Slide 27: Challenge involved
	Slide 28: Confusion-Diffusion
	Slide 29: Design Paradigms
	Slide 30: Substitution-permutation networks
	Slide 31: Adding Mixing
	Slide 32: Is this a PRP?
	Slide 33: Making the key smaller
	Slide 34: Add Mixing Permutation
	Slide 35: Repeat with S-boxes
	Slide 36: Avalanche effect: Design Principles
	Slide 37: SPNs
	Slide 38: Invertibility and Strong PRP
	Slide 39: Attacking 1-Round SPN (no output key mixing)
	Slide 40: Thank You!

