CS17/1: Cryptography

Lecture 9

Sanjam Garg



https://en.wikipedia.org/wiki/Auguste_Kerckhoffs
https://creativecommons.org/licenses/by-sa/3.0/

Integrity vs Secrecy Could be modified

before it is received

by Bob!

ciphertext

() e m := Dec(c)

c < Enc,(m) message/plaintext /

decryption
encryption



Message Authentication Code
(MAC)

message/tag pair

m,t

T 0/1 := Vrfy,(m,t)

t <~ Mac,(m) message/plaintext

tag



MACs - Formally

* (Gen,Mac,Vrfy)

* Gen(1™): Outputs a key k.
* Mac, (m): Outputs a tagt.
* Vrfy,(m,t): Outputs 0/1.

e Correctness: Vn, k « Gen(1™),vm € {0,1}", we
have that Vrfy, (m, Mac,(m)) = 1.

* Default Construction of Vrfy (for deterministic
Mac): Vrfy, (m,t) outputs 1 if and only
Mac,(m) = t.



Unforgeability/Security of MAC

MacForge, ;(1™)
1. Sample k < (1™).

2. Let (m”,t") be the
output of AMack(),

Let M be the list of
qgueries A makes.

3. Output 1if
k(m*, t*) =1A
m- &M and O
otherwise.

is existentially
unforgeable under
adaptive chosen attack,
or is eu-cma-secure if

VY PPT A it holds that:

Pr[MacForgeA, = 1] <
negl(n)



Unforgeability (Pictorially)

MacForge, 1 (1™)

Challenger Adversary A
k < (1™)
m
Let M be t L(m) t
the set of >
set of
messages
queried by
A. m* t*
Outputlifl = <
Vrfy,(m*,t*) A
m* & MandO

otherwise



Strong Unforgeability

MacForge, 1 (1™)

Challenger Adversary A
k < (1™)
m
Let M be t <« r(m) t
the set of g
set of
(message, tag)
pairs
queried by m*’ t*
A. Output1ifl = X

Vrfy,(m*, t*) A
(m*,t*) € M and 0
otherwise



MAC Construction (for fixed-
length message)

elet F: {0,1}" x {0,1}" - {0,1}" be a PRF

(1™): Sample k « {0,1}™.
(m): Outputtagt = F,(m).
. (m, t): Use default construction.



Proof

t = Fk(m)

|

Challenger

k 7@4( 1n)
b%ck(m)

Output 1ift> =
MWm’* ¢
M afd 0 otherwise

Adversary A

All A candoisguess t*. Pr[t* =
Mac,(m)] = 1/2"

t = R(m)

y

Challenger

t
J Adversary A

w m)
t y‘({k(m)

Output 1ift2 =
Mac Amt ¢
M 4and 0 otherwise




MAC (from fixed-length to
arbitrary-length messages)

Attempt 1

Construct Mac' (arbitrary-length) from Mac (fixed-
length)

* Mac,(m € {0,1}"):

1. Parsem asm, --- my; where each m; is of length n

2. Outputt, ... tz, where for each i we have
* ;= Mac(my)

Change the order of blocks to get a forgery!




MAC (from fixed-length to

Attempt 2

arbitrary-length messages)

Construct Mac' (arbitrary-length) from Mac (fixed-
length)

* Mac,(m € {0,1}"):

1. Parse masm, --- my; where each m; is of length n/2

2. Outputt, ... tz, where for each i we have
* t; = Mac(i]|my)

Mix and match blocks from different MACs
to get a forgery!




MAC (from fixed-length to
arbitrary-length messages)

Attempt 3

Construct Mac' (arbitrary-length) from Mac (fixed-
length)
* Mac,(m € {0,1}"):
1. Parse masmq --- my; where each m; is of length n/3
2. Sampler « {0,1}/3
3. Outputt, ... t;, where for each i we have
* t; = Macg(r|]i]|m;)

Drop a few blocks to get a forgery!




MAC (from fixed-length to
arbitrary-length messages)

Construct Mac' (arbitrary-length) from Mac (fixed-
length)
* Mac,(m € {0,1}"):
* Parse m as my --- my where each m; is of length n/4
e r « {0,1}V4

* Qutputr, t; ... tg, where for each i we have
e t; = Mac, (r]||2]|i]|m;), where £ is the number of blocks

Mac is not deterministic! How do we define
Vrfy?




Proof of Security

 Consider an adversary A that breaks Mac' then we
construct an adversary B that breaks

Adversary
Challenger Adversary A
k<« {01}
r|1€]|i[lm; | sampler « {0,1}%/* 1 m o
Sl ”' )_ Output t; ... t4 where t « Macy(m) t
‘ ¥ oW, |t kil ime)
ti

AN

Conditionedonthefact:Vi,jr; # 7, which
happened with probability 1 — neg(n)



Proof of Security: Case Analysis

* Aoutputs t* = (", t, ... ty+):
* Case l: Vi, r*# r; then we have a forgery
* Casell: 3 i, r*= r; but®® # ¥;, again a forgery as £"
appears in each block.
* Caselll: 3i, r"= 7; but®* = £, m" # my, a forgery on
at least one block.

* Thus, B can use the forgery above as its output.

For a message of length £ - n bits, what is the length of the Mac?



Proof of Security: Case Analysis

* Aoutputs t* = (", t, ... ty+):
* Case l: Vi, r*# r; then we have a forgery
* Casell: 3 i, r*= r; but®® # ¥;, again a forgery as £"
appears in each block.
* Caselll: 3i, r"= 7; but®* = £, m" # my, a forgery on
at least one block.

* Thus, B can use the forgery above as its output.

For a message of length £ - n bits we get a Mac of length 4 - £ - n! Very
inefficient!



CBC-MAC (Using Block Cipher)

agis
onlyn
bits!

Insecure: Adversary can forge tags (of larger lengths)! }




Attack on CBC-MAC

* Adversary obtains tag t; on a random message m4

* Next, adversary obtains tag t, on message t; P
m,.

* Note that t, serves as a tag on message m, ||m,

Thm: Let £(-) be a polynomial.If F is a PRF, then the CBC-MAC
is ef-cma for messages of length £(n) - n.



Proof of Security for fixed length

Suffices to prove that CBC is a PRF!

CBCp (x4, ... xp) = Fp (F. (... Fi(Fr(x) ® x,) D ) D x,),
where |x{| = |x,]| ... = |x,].

* In fact more: CBC,,(:) is a PRF as long as inputs are from the
set P < ({0,1}™)* that is prefix-free
* P doesn’t contain the empty string
* There doesn’t exist x, x" € P such that x is prefix of x’

* Intuitive, we will not prove it!



Use this to Mac messages of
arbitrary length (multiples of n)

* Method 1: Mac on message m is the CBC-Mac on
message |m| || m

|m| mq

| |
S - @
!

|
> @
|




Use this to sign messages of
arbitrary length (multiples of n)

e Method 2: Mac of the CBC-Mac

m;

|
D - @
!

|
- O
}




Thank You!




	Default Section
	Slide 1: CS171: Cryptography
	Slide 2: Integrity vs Secrecy
	Slide 3: Message Authentication Code (MAC)
	Slide 4: MACs - Formally
	Slide 5: Unforgeability/Security of MAC
	Slide 6: Unforgeability (Pictorially)
	Slide 7: Strong Unforgeability
	Slide 8: MAC Construction (for fixed-length message)
	Slide 9: Proof
	Slide 10: MAC (from fixed-length to arbitrary-length messages)
	Slide 11: MAC (from fixed-length to arbitrary-length messages)
	Slide 12: MAC (from fixed-length to arbitrary-length messages)
	Slide 13: MAC (from fixed-length to arbitrary-length messages)
	Slide 14: Proof of Security
	Slide 15: Proof of Security: Case Analysis
	Slide 16: Proof of Security: Case Analysis
	Slide 17: CBC-MAC (Using Block Cipher)
	Slide 18: Attack on CBC-MAC
	Slide 19: Proof of Security for fixed length
	Slide 20: Use this to Mac messages of arbitrary length (multiples of n)
	Slide 21: Use this to sign messages of arbitrary length (multiples of n)
	Slide 22: Thank You!


