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MAC: The Concept

So far in the class, we've precisely defined confidentiality for end-to-end
encrypted messaging with symmetric-key encryption.

But how can we guarantee the integrity of a ciphertext?
A Message Authentication Codes (MAC) is a keyed checksum, which is
sent along with the message. It takes in a fixed-length secret key and an

arbitrary-length message, and outputs a fixed-length checksum. A secure
MAC has the property that any change to the message will render the

checksum invalid.
[
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MAC: Definition

A MAC scheme consists of 3 PPT algorithms (Gen, MAC, Verify):
@ Gen(1"): Outputs a key k.
© MAC,(m): Outputs a tag t.
o Verifyx(m,t): Outputs 0/1.

These satisfy 2 properties:

© Correctness: Vn, k < Gen(1"),Vm € {0,1}*, we have that
Verifyx(m, MACx(m)) = 1.

@ Security: Verify,(m, t) outputs 1 if and only if MAC,(m) = t.
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MAC: Security Game

The adversary's goal is to forge a MAC. The adversary wins only if they
output a valid tag on a message that was never previously queried.

The game is between a challenger C and the adversary A.
MACForge 4 1(17):

© C samples k « Gen(1").

Q@ A makes MAC queries to the challenger. Let M be the list of queries
A makes.

@ Finally, A outputs (m*, t*).
© C outputs 1 if Verify(m*,t*) =1 A mx ¢ M and 0 otherwise.
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MAC: Security Definition

M = (Gen, MAC, Verify) is existentially unforgeable under the adaptive
chosen attack if V PPT A it holds that:

Pr[MACForge 4 1 = 1] < negl(n)
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MAC: Tips

Q |If you are asked to construct a new MAC’ and prove its security:

o Use the system from the proof workshop where your secure underlying
building block is the MAC.

o Assume there is an adversary A that breaks MAC'.

o Construct an external adversary B that simulates the MACForge game
for A and uses this to break MAC. Contradiction!

e Hint: 5 can tinker with the what it gets from A and what it forwards
from its oracle to A.

@ There can be interesting variations of unforgeability such as strong
unforgeability from Discussion 6, Q2: Adversary can win even if they
output a valid tag on a message that was previously queried.

© You can be asked to compare the security properties of the MAC
security definition with a new primitive.

e E.g. define a primitive x that is not a MAC. “
NV SRV
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MAC: Practice Problem (Part (a))

Spring 2021 MT2 Q2

Consider a “CCA-style" extension to the definition of secure message
authentication codes, where the adversary is provided with both a MAC
and a Verify oracle. Our starting point will be the “standard” notion of
MAC security, called “existential unforgeability under adaptive
chosen-message attacks,” and we will consider a variant of this definition
that allows for Verify oracle queries.

(a) Provide a formal definition of CCA-secure MACs. That is, describe an
experiment called CCA — Mac — Forge 4 n(n), and provide a security
requirement stating that no adversary can win your game except with

negligible probability.
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MAC: Practice Problem (Part (a) Solution)

(a) Provide a formal definition of CCA-secure MACs. That is, describe an
experiment called CCA — Mac — Forge 4 1(n), and provide a security
requirement stating that no adversary can win your game except with
negligible probability.

@ The challenger samples k « Gen(1").

@ The adversary A is given input 1” and oracle access to Mac(+) and
Verify,(-,-). The adversary eventually outputs a pair (m, t). Let Q
denote the set of all queries that A asked to its Mack(-) oracle.

© The output of the experiment is defined to be 1 if and only if (1)
Verify, (m,t) =1 and (2) m ¢ Q.

Mis a CCA-secure MAC if for all adversaries A,

Pr[CCA — Mac — Forge 4 n(n) = 1] = negl(n).

xﬁt é b i
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MAC: Practice Problem (Part (b))

(b) Assume that I is a standard secure deterministic MAC that has
canonical verification, meaning that i) the Mac algorithm is deterministic
and ii) the Verify algorithm, on input (m, t), recomputes t' := Macy(m)
and accepts if t' = t. Prove that I also satisfies your definition from part

(a).
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MAC: Practice Problem (Part (b) Solution)

When [1 is deterministic and has canonical verification, each message has
only a single valid tag. Thus, if the scheme is secure, then access to a
Verify oracle does not help (and so I is secure in the sense of the
definition given in part (a)). To see this, note that for any query (m, t) to
the Verify oracle there are 3 possibilities:

@ m was previously queried to the Mac oracle, and response t was
received. Here the adversary already knows that Verify,(m,t) = 1.

@ m was previously queried to the Mac oracle, and response t' # t was
received. Since 1 is deterministic, the adversary already knows
Verify, (m, t) = 0.

© m was not previously queried to the Mac oracle. By security of I1, we
can argue that Verify,(m, t) = 0 with all but negligible probability

because otherwise, m, t is a valid forgery. Let’s prove it. m
NV SRV
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MAC: Practice Problem (Part (b) Solution Continued)

We want to show that if m was not previously queried to the Mac oracle,
by security of 1, we can argue that Verify,(m, t) = 0 with all but
negligible probability because otherwise, m, t is a valid forgery.

Let MAC’ be a CCA-secure MAC. Assume that Verify,(m,t) = 1. Then
there exists an adversary A that can query a message m to the verify
oracle in the CCA-secure MAC scheme to obtain a valid MAC.

Now construct an adversary BB that simulates the security game for A to
win the [T security game.

() o)
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MAC: Practice Problem (Part (b) Solution Continued)

Bs MAC Oracle | | B-breoks MMG
A -lovedes, MRC!
w, < w, ¢— MAC query: W
k/]:HP\c'hth R IS
w, < w, — \hv'\(\ vt\\\ym,k;
€= MGl > F ke
—>
Blee: O] o
O 49— Ot )

We successfully simulate the game for A because its queries are accurately
answered. So A can produce a message that was not previously queried

such that Verify,(m, t) = 0, then so can B. Contradiction. a“
A s IS = B
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CRHF: Basic Definitions

@ Syntax:
H>(x) =y
e A collision in H* is a pair (x, x’) such that x # x" but
H®(x) = H*(X).
@ H is guaranteed to have collisions. We require that |y| < |x| (H is
compressing).

o If it's hard to find those collisions, then the hash function is
collision-resistant.

() o)
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CRHF: Formal Syntax

@ The hash function # is a pair of algorithms: H = (Gen, H).

e Gen: outputs a random key/seed s:
s < Gen(1")

The key is allowed to be public.

@ H?®: This is also sometimes referred to as the hash function.
The output length — and sometimes the input length — are fixed.
H?® is deterministic.

() o)
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CRHF: Security Game

@ Summary: The adversary is given s and a description of H, and they
try to find a collision in H® with non-negligible probability.
@ Hash-coll 4 7(n):

@ The challenger samples a key s < Gen(1") and gives s to the adversary

A.
@ A produces two inputs (x, x") to H®.
© A wins (and the game outputs 1) if (x, x") are a collision:

x # x'" and H*(x) = H*(x')

Otherwise, A loses (the game outputs 0).

@ Note that the adversary can compute H*® by themselves.
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CRHEF: Security Definition

@ H is collision-resistant if for any PPT adversary A, there is a
negligible function negl such that:

Pr[Hash-coll 4 7/(n) = 1] < negl(n)

() o)
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CRHF: Tips

@ The adversary in the CRHF security game is given s and a description
of H, so they can compute H*(x) on any input x of their choosing.
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CRHF: Practice Problem

@ Summary: The problem shows you how to reprogram a hash function
so that a given x* maps to a given y*, while maintaining
collision-resistance.

@ Source: Midterm 2, Fall 2019, Q 5.2.b
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CRHF: Practice Problem

The problem:

o Let H = (Gen, H) be a CRHF. Let x* belong to the domain of H?,
and let y* belong to the range of H".

@ Next, for any s < Gen(1"):

y* if x =x*

let H{(x) = HS(x*) if x # x* and H%(x) = y*

H*(x) otherwise

@ Prove that (Gen, H;) is a CRHF.
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CRHF: Practice Problem

P
o ’(75 j

TJ* H‘(x
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CRHF: Practice Problem Solution

(Gen, H1) is a CRHF.

Proof:
Overview:

@ Assume toward contradiction that (Gen, H;) is not a CRHF. Then
there exists an adversary A that wins the CRHF game for H; (by
finding a collision in H;) with non-negligible probability.

@ We will use A to construct an adversary B that wins the CRHF game
for H with non-negligible probability.

e This is a contradiction because (Gen, H) is a CRHF. So our initial

assumption was false and (Gen, H;) is also a CRHF.
xﬁuﬁt
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CRHF: Practice Problem Solution

Construction of B:

@ In the CRHF game for H, the challenger samples s < Gen(1") and
gives s to the adversary B.

@ B will run A on input s until A produces two inputs (x, x’).

© B makes a list of collision candidates:
C = {(X,X/), (x, x), (X/,X*)}

and checks whether each candidate (xj, x2) € C satisfies the
conditions: x; # x2 and H*(x1) = H*(x2).
© B outputs the first candidate (x1, x2) € C that satisfies the conditions.
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CRHF: Practice Problem Solution

@ Note that with non-negligible probability (x, x") will be a collision in
H3:
x # x" and H;(x) = H;(x')

@ We will prove that in this case, B will succeed in finding a collision in
He=.

() o)
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CRHF: Practice Problem Solution

T
&/‘ =

H’( x¥

Cs 171 27 /49




CRHF: Practice Problem Solution

Let's assume that (x, x") are a collision in H;. Then consider the following
trivial cases:

o Case 1: H*(x*) = y*: In this case, H; = H®; reprogramming the
function doesn’t do anything. If (x,x’) are a collision in Hj, then
(x,x") will be a collision in H®. For the remaining cases, assume that
HE(x") # y*.

e Case 2: x = x* or x = x*: This will not happen if (x,x’) is a
collision in H7 because x* is the only input that Hy maps to y*.
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CRHF: Practice Problem Solution

Now consider some more-interesting cases:
o Case 3: (x,x’) € A. Then

Ho(x) = y* = H(x)

so (x,x’) are a collision in H".
e Case 2: (x,x') € BUC. Then

H*(x) = Hi(x) = Hi(x') = H*(X)

so (x,x’) are a collision in H*.

() o)
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CRHF: Practice Problem Solution

@ Case 4: x € A,x' € B. Then
Ho(') = He(x")

so (x’,x*) are a collision in H".
@ Case 5: x € B,x' € A. Then

H(x) = H¥(x*)

so (x,x*) are a collision in H®.
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OWEF: Definition

Syntax:
fx) =y
A function f : {0,1}* — {0,1}* is one-way if

It's easy to compute, i.e., computing f(x) runs in “probabilistic
polynomial time.”, but

It's hard to invert, i.e., there is no “probabilistic polynomial time”
algorithm that can compute f~1(y).

Note: {0,1}* — {0,1}* means the input and output can be

arbitrarily long bit strings.
xﬁuﬁt
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OWEF: Security

How can we formally define “hard to invert”?
OWEF-Sec 4 ¢(n):

@ The challenger randomly samples an input x <— {0,1}" and gives f(x)
to the adversary A along with 1"

@ A produces a value x’ € {0,1}".

© A wins (and the game outputs 1) if f(x") = f(x)

@ Otherwise, A loses (the game outputs 0).

The probability A wins the above game should be at most negl(n) for
f to be secure.

This can be expressed equivalently as:

Pr [A(1", f(x)) € FY(f(x))] < negl(n).

x+{0,1}"
xﬁt xﬁt
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OWE: Tips

@ OWF's are “almost universal” in the sense that most cryptographic
primitives imply the existence of OWFs.

@ If a question asks you to construct a OWF from a standard-looking
primitive, you probably do it.

@ The only gotcha is if the given primitive is contrived, e.g.
constructing a OWF f from a PRP F as follows:

f(xo || x1) = F(x0,x1)

@ See discussion 8 for detail on why this example fails.
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OWE: Example Questions

Example questions: construct a one-way function from one of the
following primitives:

e APRG G :{0,1}"/2 - {0,1}"

o a CRHF (Gen, H) where H*: {0,1}" — {0,1}"/2

@ a one-to-one function (permutation) F : {0,1}" — {0,1}"” with a
hard-concentrate predicate hc(-).
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OWEF: Practice Problem

@ Question: construct a one-way function from a CRHF (Gen, H) such
that H%: {0,1}" — {0,1}"/2.

We'll prove the following theorem:

f(s| x) =s | H*(x) is a OWF.
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Proving f(s || x) = s || H*(x) is a OWF

Step 1: Stating our argument.
@ Suppose for the sake of contradiction that f is not a OWF.

@ This implies that there exists an adversary A that can win the
OWEF-Sec 4 ¢(n) security game with nonnegl(n) probability.

@ We will construct an adversary B from A that wins Hash-coll 4 4(n)
with nonnegl(n) probability.
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Proving f(s || x) = s || H*(x) is a OWF

Step 2: Construction of B:
@ B is given the truly random seed s from the CRHF challenger.
@ B samples a random x < {0,1}"” and runs A on H*(x) to obtain x’.
Q If x =X/, abort.

@ Otherwise, output (x,x’) as a collision.
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Proving f(s || x) = s || H*(x) is a OWF

Step 3: Analysing 5:

© We need to lower bound the probability that we don't abort (i.e., the
probability we win).

@ First, observe that the probability our random x collides with x” by
chance (H*(x) = H%(x’)) is upper bounded by the birthday bound,
271/2 Note: we have no control over the particular x’ that A got
from inverting f(x), but the x that B sampled itself is uniformly
random, meaning that chance x = x’ is still random even if A doesn't
choose x’ randomly.

© Conditioned on the above not happening, the probability that x # x’

is at least 1/2. This follows from the fact that H takes n bits to n/2

bits, implying Pr[x = x'] = 2}/2 < i

@ Putting these two point together:

' ° ’ / 1 1 .6
Pr[x 7£ X ’H (X) H (X )] =9 on/2 xﬁ;; bob i
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Proving f(s || x) = s || H*(x) is a OWF

Step 4: Wrapping up:
y oy 1 1
@ We proved that we don't abort probability 5 — a7 -
@ In the case that B doesn't abort, it follows from the construction that
(x, x") are a valid collision.

@ Thus,

Pr[Hash-collg y(n) = 1]
= PrlOWF-Sec 4 ¢(n) = 1] - Pr[x # X'|H*(x) = H*(X')]

1 1
= nonnegl(n) - <2 - 2n/2>

= nonnegl’(n)
© In summary, given an adversary A that wins OWF-Sec 4 ¢(n) with
non-negligible probability, B wins Hash-collg 1(n) with
non-negligible probability, which is a contradiction []. & s« v AKS = 24
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Public Key Encryption: Definition

(The syntax and most properties are very similar to private/symmetric key
encryption that we've seen earlier.)

A PKE scheme consists of three PPT algorithms (Gen, Enc, Dec) where
e Gen(1") — (sk, pk)
e Enc(pk,m) — ¢
e Dec(sk,c) - m/ L
and these satisfy two properties
e Correctness: Dec(sk, Enc(pk, m)) = m.
e Security: EAV = CPA security / CCA security

() o)
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PKE: CPA Security

e Challenger samples (sk, pk) < Gen(1") and gives pk to A.
e A outputs two messages mg, my.
@ Challenger samples a bit b € {0,1} and outputs Enc(pk, mp).
e A outputs b’ as a guess for b.
CPA-secure if for all PPT A

1
Pr[b = b] < 5T negl(n)

Looking at the ciphertext should not reveal which message was encrypted. \
xﬁuﬁt
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@ pk is given to the adversary, so no encryption oracle is needed — A
can locally encrypt whatever it wants.

@ sk is unknown, so decryption is not possible — CCA game for PKE
gives access to a decryption oracle to A.

@ Most proof techniques are similar to that of private key encryption
schemes:

e Show that a certain scheme is not CPA/CCA secure — construct an
adversary for the game that is able to figure out which message was
encrypted.

e Show that a certain scheme is secure — often relies on the security of

some other primitive — Proof by contradiction.
mﬁuﬁ;
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PKE Example: El Gamal Encryption

PKE scheme based on DDH.
e Gen(1"): Generate cyclic group G of order g and a generator g.
Sample x € Zg and h = g*.
Output pk = (G, q,g,h), sk =x
e Enc(pk,m) — (c1,c2): Sample r € Zq.
Output (c1, ) = (g",m- h")
e Dec(sk,(c1,c2)) — m: Output m = 2

X
q

mh" mh"

Dec(sk, Enc(pk, m)) = Dec(sk, (g", mh")) = @) = =m

=N
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Key Exchange

Consists of three randomized algorithms (P, Py, P3):
© Alice computes (my, st) < P1(1") and sends m; to Bob.

@ Bob computes (my, k) - P>(m1). Then he sends my to Alice and
outputs k.

© Alice computes k < Ps3(st, my) and outputs k.

o Correctness: Both parties get the same key k.

e Security: No eavesdropper can distinguish between (my, my, k) and

(m1, my, r) where r is a random element.
xﬁuﬁt
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Problem: Key exchange from CPA-Secure PKE

Given a PKE scheme (Gen, Enc, Dec), construct a secure key exchange
scheme (Pl, PQ, P3).
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Problem: Key exchange from CPA-Secure PKE

Given a PKE scheme (Gen, Enc, Dec), construct a secure key exchange
scheme (P1, P2, P3).

P1(1"): Run Gen(1") — (sk, pk). Return (my, st) = (pk, sk).
P>(m1): Sample random r and run Enc(my,r) — c.

Return (my, k) = (c, r).
P3(mg, st): Run Dec(st, my) — r’ and return r.

xﬁ; é b i
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Solution: Key exchange from CPA-Secure PKE

By contradiction: Suppose the Key exchange scheme is not secure. Then
we have A that can distinguish (my, my, k) from (my, my, r) where r is

random.

We'll construct B for the CPA game that distinguishes between
encryptions of mg or mj.

Challea CPA

Geea (1) - sk, p1) )
P

SMP\[ b ?EOI‘E

s b

B .go)- CcPA

> «SWM WMo, M,

M°,M|
<
= k, m
G =|Enc gP L)
(Pk/ CL, MD ]
s b e
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