CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 2
Due Date: Sept. 13th, 2024 at 8:59pm via Gradescope

This problem is based on [CK16].

1 One-Way Functions

The security of a PRF is only guaranteed if the key is kept secret. However, [GGMS86]’s PRF
construction still retains some form of security (namely weak one-wayness) even if the key is
leaked.

Definition 1.1 ([GGMS86] Function Ensemble) Let G : {0,1}"* — {0,1}?" be a PRG,
where Go(s) outputs the first n bits of G(s) and G1(s) outputs the last n bits of G(s).

For any seed s € {0,1}", and any input x = (x1,...,2,) € {0,1}", let the function
& :{0,1}" = {0,1}" be defined as follows:

FC(ar,. .. xn) = Gmn(...am(am(s))...)

We sometimes write f& as fs.
Finally let us define the function ensemble Fg = {st}se{O,l}n-

Definition 1.2 (One-Way Function Ensemble) Let F = {fs}sefo,1}» be a function en-
semble where for every s € {0,1}", fs maps {0,1}™ — {0,1}" and is efficiently computable.
F is one-way if for any efficient adversary A,

Pr Al S(0) € ST (@) < negln)
s<{0,1}"
& {0,11m

Question: Prove that Fg is one-way, assuming conjecture below.

Conjecture 1.3

|Img (fs) |

sﬁ{og}n [ on :| >1-— negl(n)

Note: We do not know if this conjecture is true, but it is still possible to prove that Fg
is weakly one-way without the conjecture.

If you’re unsure how to get started, try assuming that fs is one-to-one. This is a useful
setting in which to build intuition.
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Solution

1. Given any adversary Aowr that attempts to invert f, we will construct an adversary
Aprc that attempts to distinguish the output of G from a uniformly random string.

Construction of Apgra

(a) Receive a string y = (y°,y') € {0,1}" x {0,1}" that is either y = G(w), for
w & {0,1}", or y & {0,1}%.

(b) Sample s < {0,1}" and b & {0,1}.

(¢c) Compute z = Aowr(s,y?). Compute & = x @ 0"!||1. In other words, Z is the
same as x except the last bit is flipped.

(d) Check whether f,(z) = y® and f,(Z) = y'~°. If both checks pass, then output 1
(guess “pseudorandom”). Otherwise, output 0 (guess “truly random”).

2. Let us define some hybrids:
e Ho(n):
(a) Sample y = (4°,3") & {0,1}" x {0,1}", s & {0,1}", b & {0,1}.
(b) Compute x = Aowr(s,3°) and & = 2 ® 0" 1|1.

(c) Check whether f(z) =y and f(Z) = y'~°. If so, then output 1. If not, then
output 0.

o Hi(n):
(a) Sample w & {0,1}", s & {0,1}™, b & {0,1}. Compute y = (y°,y') = G(w).
(b) Compute z = Aowr(s, y by and & =z @ 0" 1|1.

(c) Check whether f,(x) =y’ and fs(#) = y'~°. If so, then output 1. If not, then

output 0.

o Ha(n):
(
(

a) Sample z & {0,1}", s & {0,1}". Compute b = x,, and y* = f,().

)

b) Compute 2’ = Aowr(s,y°).

(c) Check whether f(z') = 4°. If so, then output 1. If not, then output 0.

3. Claim 1.4 Pr[Ho(n) — 1] = negl(n).
Proof. Ho(n) — 1 only if fi(x) = 3 and f,(Z) = y'~°. However, this is only possible
if (y%,y') or (y',3°) is in Img(G).
Let w =Gy, _, ( .Gy (G (9)) . ) Then fs(x) = Gy, (w) and f4(Z) = Gz, (w). If
fs(x) =y’ and fo(z) = y' 7, then (y%,y") or (y',3°") is in Img(G).
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Since y & {0,1}2", this occurs with negligible probability.
Pr[Ho(n) = 1] < Pr [(4°,y") € Img(G) v (y',4") € Img(G)]
¥y

< Prl@"y') €Img(G) + Pr[(y',y°) € Img(G)]
Yoy Yy

., Img(@)
- 92n
on
_ o-ntl
<2 =2

= negl(n)

4. Pr[Hi(n) — 1] = Pr[Ho(n) — 1] £ negl(n) by the PRG security of G. Therefore

Pr[#Hi(n) — 1] = negl(n)
5. Definitions: Let fs(n_l) take an input zp,_q] € {0, 1}7~! and output
w = Gx%l(...Gm(Gm(s)) )

In other words fs(n_l) applies the first n — 1 stages of fs. For a given z, let w =
S(n_l)(x[n_l]) and b = z,,. Then fq(x) = Gp(w).

Next, let S be the set of (w, b)-pairs in {0,1}" x {0, 1} for which |f;1(Gy(w))| = 1 and

w e Img(f" ).

6. Claim 1.5 For any (w,b) € S, the unique pre-image x € f;1(Gy(w)) also satisfies
w = fs(n_l)(ff[n—l])-
Proof. We know that there exists an m’[nfl] such that w = f§"‘1)(x'[n71}). If wp,_q) #

x/[n—1]7 then fs(x[n—l}Hw = fS(x/[n_l}Hw - Gb(w)v but (x[n—l]Hb) 7é (m/[n_l]Hb) This
would imply that |f;1(Gy(w))| > 2, which is not true. [ |

7. Claim 1.6 In Hi(n), if (w,b) € S, then fs(x) = y° automatically implies that fs(¥) =
yi=b.
Proof. 3’ has only one pre-image z, and if f,(z) = ¢, then Aoy r has found this -

value. Furthermore this z-value satisfies: w = fég"_l)(ac[n_l}). So fs(Z) = G-y, (w) =
1—b
Yy o |

This implies that in H1(n),
Pr(fy(x) = °|(w,b) € S] = Pr[fs(x) =4 A f5(2) =y *|(w,b) € 5]

where z < Aowr(s, Gy(w)).
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8.

9.

10.

Claim 1.7 In Hi, Pry,sp[(w,b) € S] = 1 — negl(n).

Proof. There is a one-to-one mapping between (w, b)-values in S and x-values for which

|fo1(fs(2))] = 1 (lemma [1.11). Furthermore, Pry,[|f;!(fs(z))| = 1] = 1 — negl(n)
(lemma [1.10]). Then

Es [|5]]
2n+1

B[l € (0.1 1A o)) = 1]
277,
Prll A )] = 1)

Pr [(w,b) € S] =

w,s,b

—negl’(n)

N = N =N =

Claim 1.8 In H1, PrlAowr(s,y?) € f1(y°)|(w,b) € S] = negl(n).
Proof.

Pr[Hi(n) — 1] > Pr[Hi(n) = 1 A (w,b) € S|

r[(w,b) € S]-Pr[Hi(n) — 1|(w,b) € 5]

Y

- Pr[H1(n) — 1|(w, b) € S] + negl(n)

Pr{fs(a) =y A f5(Z) = y' " (w,b) € S] £ negl(n)

v

Prlfy(2) = y?|(w,b) € §] £ negl(n)

-PrlAowr(s,y") € £ (y)|(w,b) € S] % negl(n)

rlAowr(s, %) € £ (y")|(w,b) € S]
rlAowr(s,4°) € £ (") |(w,b) € S

In the last line, we used the fact that Pr[H;(n) — 1] is negligible. [ |

OO NN RN RN RN = g

2 - Pr[H1(n) — 1] £ negl’(n)
negl” (n)

(AVARAY]

Claim 1.9 In Ha, let w = fs(nfl)(x[n,l}) and b = x,. Then the distribution of (w,b)
is statistically close to uniformly random over S.
Proof. Let us condition on |f;1(fs(x))] = 1. This occurs with overwhelming proba-

bility over (s,z) (lemma , so conditioning on this event changes the distribution
of (w,b) by a negligible statistical distance.

Now, z is uniformly random over {x : |f;1(fs(x))| = 1}. Each z-value maps to a unique
(w,b) € S, and every value in S is mapped to (lemma|l.11]). Then (w,b) is uniformly
random over S. [ ]
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11. This implies that

Pr[Ha(n) = 1] = Pr [Aowr(s,y") € £ (y")] % negl(n)
(wb)Es

= Pr Aowr(s,5”) € £ ()] (w,b) & 5] + negl(n)
(w,b) {0,117 x {0,1}

= negl'(n)

The last line uses the fact that Pr [Aowr(s,4°) € 71 (y®)|(w,b) & S]

is negligible.

(w,b)E-{0,1}7 % {0,1}

12. Ha(n) is the one-way function ensemble security game for F. We’ve shown that for
any PPT adversary Apwp, the probability that A succeeds in the security game is
negligible. Therefore, F is a secure one-way function ensemble.

1.1 Lemmas
Lemma 1.10 With overwhelming probability over s & {0,1}" and x & {0,137, |f<H(fs(2)| =
1.

Proof. Let thing = {y € {0,1}" : |fs (y)| = 1}, and let fat, = {y € {0,1}" : |fs 1 (y)| > 2}.
Then |thing| + |fats| = [Img (fs)|. Also,

Prllf N (o) = 1] =E \thinsy]

s&qo,13m [ on
Next,

2= > W)

y€lmg(fs)

=Y 1+ Y W)

yEthing y€Efats

> > 1+ ) 2

y€Ething yEfaty
= |thing| + 2 - |faty]
— Jthin| + 2 (|Img (£,) | — [¢hin.])
=2 |Img (f.)| — [thiny|

- (2" + |thin])

(NN

Img (fs) | <
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By conjecture|1.3

1 —negl(n) <E |Img(fs)|]

s&foap | 2

1

s&{0,13n _5 (2" + ’th'nS‘)]

L [[thins]]
2 s{0,1}m on

[ [thing]
s&foapn | 2n

< Pr{|f 1 (fo(2))| = 1]

S,x

1 — 2 - negl(n) is overwhelming, and so is Prs . [| f; 1 (fs(z))| = 1]. [ |
Lemma 1.11 Given x € {0,1}" for which |f71(fs(x))| = 1, map
T — (wa b) = (fén_l)(x[n—l]))wn)

This is a one-to-one mapping between (w, b)-values in S and x-values for which |f1(fs(x))] =
1.

Proof. If |f;!(fs(x))] = 1, then (w,b) is in S. This is because w € Img(fs(nfl)), and
[fH (Go(w)) = £ (fs())] = 1.

Next, every x for which |f;(fs(z))| = 1 maps to a unique (w,b)-value. Otherwise, if
there were two different z, 2/-values that mapped to the same (w,b), then fs(z) = fs(2'), so
ot (fs(@))] = 2.

Finally, every (w, b) € S is mapped to by an z for which | f;1(fs(z))| = 1. Since (w,b) €
there is a zp,_y € {0,1}"! such that w = s(n*l)(a:[n,l]). If we let z, = b, then fq(x)
Gy(w), and |f; (fo(2)] = [foH(Gy(w))] = 1.

S,
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