
CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 5
Due Date: Friday October 18th, 2024 at 8:59pm via Gradescope

1 Signature Scheme from CDH

We will construct a signature scheme that resembles the Schnorr signature scheme and prove
it secure given the CDH assumption.

Let G be a cryptographic group of prime order p that is generated by g. Also, let p
be super-polynomial in the security parameter λ. Let us also define two random oracles
H : G→ G and G :M×G6 → Zp, where M is the message space.

1. Gen(1λ): Sample x
$← Zp and compute y = gx. Output pk = y and sk = x.

2. Sign(sk,m): To sign a message m ∈M, sample k
$← Zp and compute the following:

u = gk

h = H(u)

z = hsk

v = hk

c = G(m, g, h, pk, z, u, v)

s = k + c · sk mod p

σ = (z, s, c)

Output σ.

3. Verify(pk,m, σ): Compute the following:

u′ = gs · pk−c

h′ = H(u′)

v′ = h′s · z−c

c′ = G(m, g, h′, pk, z, u′, v′)

Output 1 (accept) if c = c′ and 0 (reject) otherwise.

Definition 1.1 (Computational Diffie-Hellman (CDH) Assumption) The CDH chal-

lenger samples a, b
$← Zp independently and gives the adversary (g, ga, gb). The adversary

wins the CDH game if they return ga·b. The CDH assumption states that for any PPT
adversary, the probability that the adversary wins the CDH game is negl(λ).

Question: Prove that the signature scheme constructed above is secure in the random
oracle model given the CDH assumption.

Solution The solution is based on [CM05], section 4.
Given an adversary ASign that breaks the security of the signature scheme, we construct

the following CDH adversary ACDH that breaks breaks the CDH assumption.
Construction of ACDH :

1

CS 276, Fall 2024 Prof. Sanjam Garg

1. ACDH receives (g, ga, gb). Then ACDH initializes the signing adversary ASign with
security parameter 1λ and pk = ga. That means implicitly, sk = a.

2. Simulated Random Oracle: ACDH keeps a truth table H for H and a truth table
G for G, which works similarly.

Initially, H = {}, but H can be reprogrammed. If (u, h) ∈ H, then H(u) = h. On the
other hand, if for a given input u, there is no h such that (u, h) ∈ H, then H(u) = ⊥.
Finally, each input u ∈ G can have at most one output, so there is at most one h-value
such that (u, h) ∈ H.

3. ACDH runs ASign internally, and handles queries to H,G, Sign(sk, ·) as follows.

• H(u): On input u ∈ G:

(a) If H(u) = ⊥, then sample d
$← Zp, and append (u, gb · gd) to H so that now,

H(u) = gb · gd.
(b) Return H(u).

• G(m, g, h, pk, z, u, v): On input (m, g, h, pk, z, u, v):

(a) IfG(m, g, h, pk, z, u, v) = ⊥, then sample d
$← Zp and append

(
(m, g, h, pk, z, u, v), d

)
to G so that G(m, g, h, pk, z, u, v) = d.

(b) Return G(m, g, h, pk, z, u, v).

• Sign(sk,m): On input m ∈M, do the following:

(a) Sample (κ, c, s)
$← Z3

p.

(b) Compute

u = gs · pk−c

h = gκ

z = pkκ

v = hs · z−c

σ = (z, s, c)

(c) If H(u) 6= ⊥, then ACDH outputs ⊥ and aborts. Otherwise, it appends
(u, h) to H. Likewise, if G(m, g, h, pk, z, u, v) 6= ⊥, then ACDH outputs ⊥ and
aborts. Otherwise, it appends

(
(m, g, h, pk, z, u, v), c

)
to G.

(d) Return σ.

4. When ASign outputs an attempted forgery (m∗, (z∗, s∗, c∗)), ACDH checks that

Verify(pk,m∗, (z∗, s∗, c∗)) = 1

and that (m∗, (z∗, s∗, c∗)) were not previously generated on a query to Sign. If at least
one check fails, then ACDH outputs ⊥ and aborts. Otherwise, if both checks pass, then
ACDH computes:

u∗ := gs
∗ · pk−c∗

and continues.

2

CS 276, Fall 2024 Prof. Sanjam Garg

5. We can assume that H(u∗) 6= ⊥ because Verify(pk,m∗, (z∗, s∗, c∗)) = 1.

(a) Case 1: If the value of H(u∗) was determined during one of ASign’s queries to
H, then ACDH looks up the value of d such that H(u∗) = gb · gd. Then ACDH
computes and outputs:

z∗ · (ga)−d

as its guess for ga·b.

(b) Case 2: If the value of H(u∗) was determined during one of ASign’s queries to
Sign(sk, ·), then ACDH looks up the values of (m′, c′, s′) from that query. Note
that u∗ = gs

′ · pk−c′ . Then ACDH computes and outputs:

(gb)(s
∗−s′)/(c∗−c′)

as its guess for ga·b.

Analysis ACDH correctly simulates the signature security game for ASign. Assuming that
ACDH does not abort during the simulation of Sign(sk,m), ACDH correctly simulates the
oracles for H,G, Sign(sk, ·) (lemma 1.3). Furthermore, the probability that ACDH aborts
during the simulation of Sign(sk,m) is negligible (lemma 1.2).

Next, ASign will output a valid forgery with non-negligible probability. This means that

Verify(pk,m∗, (z∗, s∗, c∗)) = 1

and m∗ was not previously queried to Sign. Then ACDH will reach either case 1 or 2.
Next, if ACDH reaches cases 1 or 2, then ACDH will compute the correct output with

overwhelming probability. If ACDH reaches case 1, then

ga·b = z∗ · (ga)−d

with overwhelming probability (lemma 1.4). If ACDH reaches case 2, then

ga·b = (gb)(s
∗−s′)/(c∗−c′)

with overwhelming probability (lemma 1.7).

Lemmas

Lemma 1.2 The probability that ACDH outputs ⊥ and aborts during the simulation of
Sign(sk,m) is negl(λ).

Proof. ACDH outputs ⊥ and aborts during the simulation of Sign(sk,m) if H(u) or
G(m, g, h, pk, z, u, v) already have a value determined from previous steps.

u is uniformly random and independent of all variables in previous rounds. This is because

u = gs · pk−c

where s is uniformly random in Zp and independent of all previously computed variables.

3

CS 276, Fall 2024 Prof. Sanjam Garg

At any point in the simulation, H contains poly(λ)-many input-output pairs. The prob-
ability that (u, ∗) ∈ H is poly(λ)/|G| = negl(λ). Then in the simulation of Sign(sk,m), the
probability that H(u) 6= ⊥ is negl(λ).

Likewise for G(m, g, h, pk, z, u, v): there are |G| possible values that u can take and all are
equally likely, over the randomness of s. G contains poly(λ)-many input-output pairs. The
probability that

(
(m, g, h, pk, z, u, v), ∗

)
∈ G is poly(λ)/|G| = negl(λ). Then in the simulation

of Sign(sk,m), the probability that G(m, g, h, pk, z, u, v) 6= ⊥ is negl(λ).

Lemma 1.3 Given that ACDH does not abort during the simulation of Sign(sk,m), ACDH
correctly simulates the oracles for H,G, Sign(sk, ·).

Proof. First, (g, pk, sk) have the correct distribution. sk = a, which is uniformly random
in Zp, and pk = gsk.

Second, H is simulated correctly because each query to H receives a uniformly random
response that is independent of the output of H on any other input. When ASign queries
H, they receive the response gb · gd, which is uniformly random due to the randomness of
d. In the simulation of Sign(sk,m), the value of H(u) is reprogrammed to h = gκ, which is
uniformly random due to the randomness of κ.

Third, G is simulated correctly because each query to G receives a uniformly random
response that is independent of the output of G on any other input. When ASign queries G,
they receive the response d, which is uniformly random. In the simulation of Sign(sk,m), the
value of G(m, g, h, pk, z, u, v) is reprogrammed to c which is uniformly random.

Fourth, the variables
(u, h, z, v, c, s)

have the same distribution in the simulation of Sign(sk,m) as they do in the real signature
game. In the real signature game:

• c is uniformly random because it is the output of G(m, g, h, pk, z, u, v), and with over-
whelming probability, G has not previously been queried on (m, g, h, pk, z, u, v).

• s is uniformly random due to the randomness of k. Recall that s = k + c · sk mod p.

• h is uniformly random because it is the output of H(u), and with overwhelming prob-
ability, H has not previously been queried on u.

• Given (c, s, h, pk, sk), the variables (u, z, v) are completely determined by the following
equations:

u = gs · pk−c (1.1)

z = hsk = glogg(h)·sk =
(
gsk
)logg(h)

(1.2)

= pklogg(h) (1.3)

v = hs · z−c (1.4)

In the simulation of Sign(sk,m):

• c and s are uniformly random and independent. Also, h is uniformly random due to
the randomness of κ.

4

CS 276, Fall 2024 Prof. Sanjam Garg

• Given (c, s, h, pk, sk), the variables (u, z, v) are completely determined by the same
equations – 1.1, 1.3, 1.4 – as in the real signature game.

Lemma 1.4 If ACDH reaches case 1, then with overwhelming probability:

ga·b = z∗ · (ga)−d

Proof. Recall that A’s output is (m∗, (z∗, s∗, c∗)), and let the variables computed by
Verify(pk,m∗, (z∗, s∗, c∗)) be the following:

u′ = gs
∗ · pk−c∗

h′ = H(u′)

v′ = h′s
∗ · (z∗)−c

∗

c′ = G(m∗, g, h′, pk, z∗, u′, v′)

Next, lemma 1.5 shows that the probability that A outputs an (m∗, (z∗, s∗, c∗)) such that
Verify(pk,m∗, (z∗, s∗, c∗)) = 1 but logg(pk) 6= logh′(z

∗) is negligible. So from now on, let us
assume that logg(pk) = logh′(z

∗). Then:

z∗ = h′ logg(pk) = g(b+d)·a = ga·b+a·d

z∗ · (ga)−d = ga·b

Lemma 1.5 The probability that A outputs an (m∗, (z∗, s∗, c∗)) such that Verify(pk,m∗, (z∗, s∗, c∗)) =
1 but logg(pk) 6= logh′(z

∗) is negligible.

Proof. Verify(pk,m∗, (z∗, s∗, c∗)) = 1 only if c′ satisfies u′ = gs
∗ ·pk−c′ and v′ = h′s

∗ ·(z∗)−c
′
.

However, the value of c′ = G(m∗, g, h′, pk, z∗, u′, v′) is sampled uniformly at random after
(m∗, g, h′, pk, z∗, u′, v′) have been fixed.

For any (m∗, g, h′, pk, z∗, u′, v′), if logg(pk) 6= logh′(z
∗), then there is at most one value of

(s∗, c′) such that u′ = gs
∗ · pk−c′ and v′ = h′s

∗ · (z∗)−c
′

(lemma 1.6).
With overwhelming probability, each query (m∗, g, h′, pk, z∗, u′, v′) toG for which logg(pk) 6=

logh′(z
∗) will result in a c′ such that u′ 6= gs

∗ · pk−c′ or v′ 6= h′s
∗ · (z∗)−c

′
. In this case, there

is no value of c∗ for which Verify(pk,m∗, (z∗, s∗, c∗)) = 1.
Since A is limited to making only polynomially-many queries to G, A has negligible prob-

ability of finding a (m∗, (z∗, s∗, c∗)) such that Verify(pk,m∗, (z∗, s∗, c∗)) = 1 but logg(pk) 6=
logh′(z

∗).

Lemma 1.6 For a given (m, g, h, pk, z, u, v), if logg(pk) 6= logh(z), then there is at most one
value of (s, c) for which u = gs · pk−c and v = hs · z−c.

Proof. Let sk = logg(pk) and let sk′ = logh(z). Also, let k = logg(u) and let k′ = logh(v).
Then

gs · pk−c = gs−c·sk

hs · z−c = hs−c·sk
′

5

CS 276, Fall 2024 Prof. Sanjam Garg

Next,

u = gs · pk−c ⇐⇒ k = s− c · sk
v = hs · z−c ⇐⇒ k′ = s− c · sk′

If sk 6= sk′, then the only way that u = gs · pk−c and v = hs · z−c is if

c =
k − k′

sk′ − sk
and s = k + c · sk (1.5)

Lemma 1.7 If ACDH reaches case 2, then with overwhelming probability:

ga·b = (gb)(s
∗−s′)/(c∗−c′)

Proof. In case 2,

u∗ = gs
∗ · pk−c∗ = gs

′ · pk−c′

If c∗ 6= c′, then

pk = ga = g(s
∗−s′)/(c∗−c′)

a =
s∗ − s′

c∗ − c′

ga·b =
(
gb
)(s∗−s′)/(c∗−c′)

It just remains to show that c∗ 6= c′. Since only polynomially-many queries are made to G,
with overwhelming probabiliy over the randomness of G, every distinct query to G produces
a unique output value. We also know that m∗ was not previously queried to Sign(sk, ·), so
m∗ 6= m′. Since

c∗ = G(m∗, g, h∗, pk, z∗, u∗, v∗)

c′ = G(m′, g, h′, pk, z′, u′, v′)

then c∗ 6= c′ with overwhelming probability.

2 Additively Homomorphic Encryption (AHE)

Some natural encryption schemes, such as El Gamal encryption, are additively homomor-
phic1, meaning that Enc(m(1)) and Enc(m(2)) can be combined into a valid encryption of
m(1) +m(2) without knowledge of the secret key. It turns out that this property is sufficient
to construct public-key encryption. We will show that secret-key additively homomorphic
encryption implies public-key encryption.

1This is assuming we use the additive notation for operations over the cryptographic group.

6

CS 276, Fall 2024 Prof. Sanjam Garg

Definition 2.1 (Additively Homomorphic Encryption) Let (Gen,Enc,Dec, H⊕) be four
PPT algorithms with message spaceM = {0, 1} and ciphertext space C. Let H⊕ map C` → C,
for any ` = poly(λ).

Next, (Gen,Enc,Dec, H⊕) is a secret-key additively homomorphic encryption (AHE)
scheme2 if the following properties are satisfied:

• Perfect Correctness: For any ` = poly(λ) messages (m(1), . . . ,m(`)) ∈ {0, 1}`:

Pr

[
Dec

(
sk, H⊕

[
Enc(sk,m(1)), . . . ,Enc(sk,m(`))

])
=
∑
i∈[`]

m(i) mod 2

]
= 1

• Compactness: There exists a polynomial function m(·) such that for any ` = poly(λ)
messages (m(1), . . . ,m(`)) ∈ {0, 1}`, the length of H⊕

[
Enc(sk,m(1)), . . . ,Enc(sk,m(`))

]
is upper-bounded by m(λ).3

• CPA security: (Gen,Enc,Dec) constitute a CPA secure encryption scheme.

The following construction builds a public-key encryption scheme (Gen′,Enc′,Dec′) from
a secret-key AHE scheme (Gen,Enc,Dec, H⊕).

1. Gen′(1λ): Compute the following:

sk← Gen(1λ)

`′ = 4m(λ)

r
$← {0, 1}`′\{0`′}

Xi ← Enc(sk, ri), ∀i ∈ [`′]

pk = (X1, . . . , X`′ , r)

Then output (pk, sk).

2. Enc′(pk,m):

(a) Sample s ∈ {0, 1}`′ uniformly at random such that 〈r, s〉 = m.4

(b) Let Xs be a tuple of all the Xi-values for which si = 1.

(c) Compute and output c = H⊕(Xs).

3. Dec′(sk, c): Output Dec(sk, c).

2Public-key additively homomorphic encryption is defined similarly, except (Gen,Enc,Dec) are a public-key
encryption scheme, H⊕ takes pk as input, and Enc takes pk, instead of sk, as input.

3Note that m(λ) is independent of `.
4〈r, s〉 =

∑
i∈[`′] ri · si mod 2. We can sample s using rejection sampling: sample s

$← {0, 1}`
′

and check

whether 〈r, s〉 = m. If not, then reject this s and repeat the procedure.

7

CS 276, Fall 2024 Prof. Sanjam Garg

Question: Prove that if (Gen,Enc,Dec, H⊕) is a secret-key AHE scheme, then (Gen′,Enc′,Dec′)
satisfies (1) CPA security and (2) the following notion of perfect correctness:

Pr
[
Dec′(sk,Enc′(pk,m)) = m

]
= 1, ∀m ∈ {0, 1}

Solution This proof is based on [Rot11].

Lemma 2.2 (Gen′,Enc′,Dec′) satisfies perfect correctness.

Proof. For any message m ∈ {0, 1}, let c = Enc′(pk,m). Then there exists some s ∈ {0, 1}`′

such that 〈r, s〉 = m and c = H⊕(Xs).
Then:

Dec′
[
sk,Enc′(pk,m)

]
= Dec

(
sk, H⊕(Xs)

)
= Dec

(
sk, H⊕

[(
Enc(sk, ri)

)
∀i∈[`′]:si=1

])
=

∑
i∈[`′]:si=1

ri mod 2

=
∑
i∈[`′]

ri · si mod 2 = 〈r, s〉

= m

Therefore, (Gen′,Enc′,Dec′) satisfies perfect correctness.

Lemma 2.3 (Gen′,Enc′,Dec′) satisfies CPA security.

Proof. Consider the following sequence of hybrids:

• H0: The CPA security game for (Gen′,Enc′,Dec′). Without loss of generality, we can
assume that the adversary’s challenge messages are m0 = 0 and m1 = 1.

1. Setup: The challenger computes (pk, sk)← Gen′(1λ) and sends pk to A.

2. Challenge: The adversary submits messages m0 = 0 and m1 = 1. The challenger
samples b← {0, 1} and computes c = Enc′(pk,mb) as follows:

They sample s
$← {s′ ∈ {0, 1}`′ : mb = 〈r, s′〉} and compute c = H⊕(Xs).

5

Then they send c to A.

3. Response: A responds with b′ ∈ {0, 1}. The output of the hybrid is 1 if b = b′

and 0 otherwise.

• H1: Same as H0, except for all i ∈ [`′], Xi = Enc(sk, ri) is replaced with

X ′i = Enc(sk, 0)

5Note that for each b ∈ {0, 1}, mb = b.

8

CS 276, Fall 2024 Prof. Sanjam Garg

• H2: Same as H1, except instead of sampling b
$← {0, 1} and then sampling s

$← {s′ ∈
{0, 1}`′ : mb = 〈r, s′〉}, the challenger first samples s

$← {0, 1}`′ and then computes
b = mb = 〈r, s〉.

• H3: Same as H1, except instead of sampling r
$← {0, 1}`′\{0`′} and s

$← {0, 1}`′ , the

challenger samples r
$← {0, 1}`′ and s

$← {0, 1}`′\{0`′}.

Claim 2.4
∣∣Pr[H0 → 1]− Pr[H3 → 1]

∣∣ = negl(λ)

Proof. H0 and H1 are indistinguishable due to the CPA security of (Gen,Enc,Dec).
H1 and H2 are perfectly indistinguishable because the only difference between the two

hybrids is the order in which b and s are sampled, but the joint distribution of (b, s) is the
same in both hybrids.

Since r 6= 0`
′
, then 〈r, s〉 = 0 for exactly half of the s-values in {0, 1}`′ , and 〈r, s〉 = 1 for

the other half. Therefore, if s is sampled uniformly at random from {0, 1}`′ , then b = 〈r, s〉
will be uniformly random over {0, 1} due to the randomness of s.
H2 and H3 are statistically indistinguishable because the distribution of (r, s) in the two

hybrids is statistically close.
Then ∣∣Pr[H0 → 1]− Pr[H3 → 1]

∣∣ = negl(λ)

Claim 2.5 Pr[H3 → 1] = 1
2 + negl(λ)

Proof. We will use the leftover hash lemma to show that from the adversary’s view in H3,
b is statistically close to uniformly random.

First, let us define a hash function hr:

hr(s) = 〈r, s〉

where r
$← {0, 1}`′ and s ∈ {0, 1}`′\{0`′}. We claim that hr is pairwise-independent.

Second, in H3, the variables (X ′, r, s, c, b) are sampled as follows:

X ′ = (X ′1, . . . , X
′
`′) = (Enc(sk, 0), . . . ,Enc(sk, 0))

r
$← {0, 1}`′

s
$← {0, 1}`′\{0`′}

c = H⊕(X ′s)

b = hr(s)

The adversary receives (X ′, c, r) and is asked to guess hr(s). Given (X ′, c), the variables (r, s)
are uniformly random over {0, 1}`′ × SX′,c, where:

SX′,c = {s′ ∈ {0, 1}`′\{0`′} : c = H⊕(X ′s)}

9

CS 276, Fall 2024 Prof. Sanjam Garg

By the leftover hash lemma (lemma 2.6), for b∗
$← {0, 1}, the statistical distance between(

X ′, c, r, hr(s)
)

and (X ′, c, r, b∗)

is 2
√

2
|SX′,c|

.

Third,

Pr[H3 → 1] = Pr
X′,c,r,s

[A(X ′, c, r)→ hr(s)] = EX′,c
[
Pr
r,s

[A(X ′, r, c)→ hr(s)|X ′, c]
]

= EX′
[∑

c

Pr
s

(c = H⊕(X ′s)|X ′) · Pr
r,s

[A(X ′, r, c)→ hr(s)|X ′, c]

]

= EX′
[∑

c

|SX′,c|
2`′ − 1

· Pr
r,s

[A(X ′, r, c)→ hr(s)|X ′, c]

]

≤ EX′
[∑

c

|SX′,c|
2`′−1

·

(
Pr
r,s,b∗

[A(X ′, r, c)→ b∗|X ′, c] + 2

√
2

|SX′,c|

)]

= EX′
[∑

c

|SX′,c|
2`′−1

·

(
1

2
+ 2

√
2

|SX′,c|

)]

=
1

2
+ EX′

[∑
c

2−(`
′−1) · 2

√
2 ·
√
|SX′,c|

]

≤ 1

2
+ 2
√

2 · 2−(`′−1) · EX′
[∑

c

2`
′/2

]
≤ 1

2
+ 2
√

2 · 2−(`′−1) · EX′
[
2m · 2`′/2

]
=

1

2
+ 2
√

2 · 2m−`′/2+1

=
1

2
+ 4
√

2 · 2m−2m =
1

2
+ 4
√

2 · 2−m

=
1

2
+ negl(λ)

Lemma 2.6 (Leftover Hash Lemma) Let hr be a pairwise-independent hash function with

a single-bit output. For a given subset S of the domain of hr, let r
$← {0, 1}`′, s $← S, and

b∗
$← {0, 1}. Then the statistical distance between(

r, hr(s)
)

and (r, b∗)

is 2
√

2
|S| .

A version of this lemma is stated in [Rot11], footnote 7, and [Gol08], theorem D.5.

Putting together the previous claims, we have that Pr[H0 → 1] ≤ 1
2 + negl(λ). Since H0

is the CPA security game, this shows that (Gen′,Enc′,Dec′) satisfies CPA security.

10

CS 276, Fall 2024 Prof. Sanjam Garg

References

[CM05] Benôıt Chevallier-Mames. An efficient cdh-based signature scheme with a tight se-
curity reduction. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
pages 511–526, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, USA, 1 edition, 2008.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Yu-
val Ishai, editor, Theory of Cryptography, pages 219–234, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

11

	Signature Scheme from CDH
	Additively Homomorphic Encryption (AHE)

