
CS276: Graduate Cryptography1

This draft is continually being updated.

Sanjam Garg
University of California, Berkeley

August 8, 2024

1Based on scribe notes by students from taking CS276 in fall 2014. Also, thanks to Peihan Miao and
Akshayaram Srinivasan for helping improve these notes.

2

Contents

1 One-Way Functions 7

1.1 Noticeable and Negligible Functions . 7

1.2 Probabilistic Polynomial Time . 8

1.3 One-Way Functions . 9

1.4 Composability of One-Way Functions . 10

1.5 Examples . 10

1.6 Hardness Amplification . 12

1.7 Levin’s One-Way Function . 14

2 Pseudorandomness 17

2.1 Hard Core Bit . 17

2.2 Hard Core Bit of any One-Way Functions . 18

2.3 Computational Indistinguishability . 24

2.4 Pseudorandom Generators . 25

2.4.1 PRG Extension . 25

2.4.2 PRG from OWP (One-Way Permutations) 26

2.5 Pseudorandom Functions . 28

2.5.1 Definitions . 28

2.5.2 Construction of PRF from PRG . 28

3 Number Theoretic Background and Constructions 31

3.1 The Discrete-Log Family of Problem . 31

3.2 CDH in QRN implies Factoring . 33

3.3 OWFs from Discrete-Log . 33

3.4 PRFs from DDH: Naor-Reingold PRF . 33

4 Digital Signatures 35

4.1 Definition . 35

4.2 One-time Digital Signature . 36

4.3 Collision Resistant Hash Functions . 37

4.3.1 Definition of a family of CRHF . 37

4.3.2 Collison Resistant Hash functions from Discrete Log 37

4.4 Multiple-Message Digital Signature . 38

4.4.1 One-time Signature Scheme for Long Messages 38

4.4.2 Signature Scheme for Multiple Messages . 39

3

5 Public Key Encryption 41

5.1 Correctness . 41

5.2 Indistinguishability and Semantic Security . 42

5.2.1 Indistinguishability Security . 42

5.2.2 Semantic Security . 42

5.2.3 Equivalence of Definitions . 43

5.3 Public Key Encryption from Trap-Door OWP . 43

5.4 Indistinguishability in a Chosen Plaintext Attack . 43

5.5 Chosen Ciphertext Attack for Public Key Encryption 44

5.6 One Time Secure Signature Scheme . 48

5.7 CCA2 . 49

5.7.1 Model . 49

5.7.2 Security . 50

5.7.3 Use and Efficiency . 53

6 Zero-Knowledge Proofs 55

6.1 Interactive Proofs . 55

6.2 Zero Knowledge Proofs . 56

6.3 Graph Isomorphism . 61

6.4 Zero-Knowledge for NP . 61

6.4.1 Commitment Schemes . 62

6.4.2 3COL Protocol . 63

7 Bilinear Maps 67

7.1 Diffie-Hellman Key Exchange . 67

7.1.1 Discussion 1 . 67

7.1.2 Discussion 2 . 68

7.2 Bilinear Maps . 68

7.2.1 Discussion 1 . 68

7.3 Tripartite Diffie-Hellman . 69

7.4 IBE: Identity-Based Encryption . 69

7.4.1 Security Descriptions . 70

7.4.2 Discussion 1 . 71

8 Secure Computation 75

8.1 Introduction . 75

8.2 Real/Ideal Paradigm . 75

8.3 Oblivious transfer . 77

8.3.1 1-out-of-2 oblivious transfer . 77

8.3.2 1-out-of-4 oblivious transfer . 78

8.4 Yao’s Two Party Computation Protocol . 79

8.4.1 Construction: . 79

8.4.2 Proof of Security . 80

8.5 GMW Protocol . 81

8.6 Malicious attacker intead of semi-honest attacker . 81

8.6.1 Zero-knowledge proof of knowledge (ZK-PoK) 82

4

9 Witness Encryption 85
9.1 A Story . 85
9.2 A Simple Language . 86
9.3 An NP Complete Language . 87

9.3.1 Exact Cover . 87
9.3.2 Multilinear Maps . 87
9.3.3 The n-MDDH Assumption . 87
9.3.4 Decisional Multilinear No-Exact-Cover Assumption 88
9.3.5 The Encryption Scheme . 88

10 Obfuscation 89
10.1 VBB Obfuscation . 89
10.2 Indistinguishability Obfuscation . 91
10.3 iO for Polynomial-sized Circuits . 92

10.3.1 Construction . 92
10.3.2 Proof of Security . 93

10.4 Identity-Based Encryption . 93
10.5 Digital Signature Scheme via Indistinguishable Obfuscation 94
10.6 Public Key Encryption via Indistinguishable Obfuscation 95
10.7 Indistinguishable Obfuscation Construction from NC1 iO 96

5

6

Chapter 1

One-Way Functions

Cryptography enables many paradoxical objects such as public key encryption, verifiable electronic
signatures, zero-knowledge protocols and fully homomorphic encryption. The two main steps in
the development of such seemingly impossible primitives are: (i) defining the desired security
properties formally, and (ii) obtaining a construction satisfying the security property provably.
The second step assumes (unproven) computational assumptions which are believed to be hard.
In this course we will define several cryptographic primitives and argue their security based on
well-defined computational hardness assumption. However, we will largely ignore the mathematics
underlying the assumed computational intractability assumptions.

The weakest computational hardness assumptions (and also the simplest) of interest in cryp-
tography is the existence of one-way functions. We study this objects in this chapter. In order to
define one-way functions we need new formal vocabulary that we describe in Sections 1.1 and 1.2.
Finally, we define one way functions in Section 1.3.

1.1 Noticeable and Negligible Functions

Noticeable and negligible functions are used to characterize the “largeness” or “smallness” of a
function describing the probability of some event. Intuitively, a noticeable function is required to
be larger than some inverse-polynomially function in the input parameter. On the other hand, a
negligible function must be smaller than any inverse-polynomial function of the input parameter.
More formally:

Definition 1.1 (Noticeable Function) A function µ(·) : Z+ → [0, 1] is noticeable iff ∃c ∈
Z+, n0 ∈ Z+ such that ∀n ≥ n0, µ(n) ≥ n−c.

Example. Observe that µ(n) = n−3 is a noticeable function. (Notice that the above definition is
satisfied for c = 3 and n0 = 1.)

Definition 1.2 (Negligible Function) A function µ(·) : Z+ → [0, 1] is negligible iff ∀c ∈ Z+ ∃n0 ∈
Z+ such that ∀n ≥ n0, µ(n) < n−c.

Example. µ(n) = 2−n is an example of a negligible function. This can be observed as follows.
Consider an arbitrary c ∈ Z+ and set n0 = c2. Now, observe that for all n ≥ n0, we have that

n
log2 n

≥ n0
log2 n0

≥ n0√
n0

=
√
n0 = c. This allows us to conclude that

µ(n) = 2−n = n
− n

log2 n ≤ n−c.

7

Thus, we have proved that for any c ∈ Z+, there exists n0 ∈ Z+ such that for any n ≥ n0,
µ(n) ≤ n−c.

Gap between Noticeable and Negligible Functions. At first thought it might seem that a
function that is not negligible (or, a non-negligible function) must be a noticeable. This is not true!
Negating the definition of a negligible function, we obtain that a non-negligible function µ(·) is
such that ∃c ∈ Z+ such that ∀n0 ∈ Z+, ∃n ≥ n0 such that µ(n) ≥ n−c. Note that this requirement
is satisfied as long as µ(n) ≥ n−c for infinitely many choices of n ∈ Z+. However, a noticeable
function requires this condition to be true for every n ≥ n0.

Below we give example of a function µ(·) that is neither negligible nor noticeable.

µ(n) =
{ 2−n : x mod 2 = 0
n−3 : x mod 2 ̸= 0

This function is obtained by interleaving negligible and noticeable functions. It cannot be negligi-
ble (resp., noticeable) because it is greater (resp., less) than an inverse-polynomially function for
infinitely many input choices.

Properties of Negligible Functions. Sum and product of two negligible functions is still a
negligible function. We argue this for the sum function below and defer the problem for products
to Exercise 1.2.

Lemma 1.1 If µ(n) and ν(n) are negligible functions from domain Z+ to range [0, 1/2] then ψ(n) =
µ(n) + ν(n) is also a negligible function.

Proof. We need to show that for any c ∈ Z+, we can find n0 such that ∀n ≥ n0, ψ(n) ≤ n−c.
Our argument proceeds as follows. Given the fact that µ and ν are negligible we can conclude
that there exist n1 and n2 such that ∀n ≥ n1, µ(n) ≤ n−(c+1) and ∀n ≥ n2, g(n) ≤ n−(c+1).
Combining the above two fact and setting n0 = max(n1, n2, 2) we have that for every n ≥ n0,
ψ(n) = µ(n) + ν(n) ≤ n−(c+1) + n−(c+1) = 2n−(c+1) ≤ n · n−(c+1) (since, 2 ≤ n0 ≤ n). Thus,
ψ(n) ≤ n−c and hence is negligible.

1.2 Probabilistic Polynomial Time

A polynomial time Turing Machine is one which halts in time polynomial in its input length. A
probabilistic Turing Machine is allowed to make random choices in its execution. More formally:

Definition 1.3 (Probabilistic Polynomial Time) A Turing Machine M is a said to be PPT
(Probabilistic Polynomial Time) Turing Machine if ∃c ∈ Z+ such that ∀x ∈ {0, 1}∗, M(x) halts in
|x|c steps.

A non-uniform PPT Turing Machine is a collection of machines one for each input length, as
opposed to a single machine that must work for all input lengths.

Definition 1.4 (Non-uniform PPT) A non-uniform PPT machine is a sequence of Turing Ma-
chines {M1,M2, · · · } such that ∃c ∈ Z+ such that ∀x ∈ {0, 1}∗, M|x|(x) halts in |x|c steps.

8

1.3 One-Way Functions

A one-way function f : {0, 1}n → {0, 1}m is a function that is easy to compute (computable by a
polynomial time machine) but hard to invert. We formalize this by saying that there cannot exist
a machine that can invert f in polynomial time.

Definition 1.5 (One-Way Functions) A function f : {0, 1}n → {0, 1}m is said to be one-way
function if:

- f is computable by a polynomial time machine, and

- ∀ non-uniform PPT adversaries A we have that

µA,f (n) = Pr
x

$←{0,1}n
[A(1n, f(x)) ∈ f−1(f(x))] (1.1)

is a negligible function, where f−1(y) is a set such that for all x ∈ f−1(y) we have that

f(x) = y and x
$← {0, 1}n denotes that x is drawn uniformly at random from the set {0, 1}n.

The above definition is rather delicate. We next describe problems in the slight variants of this
definition that are insecure.

1. What if we require that Pr
x

$←{0,1}n
[A(1n, f(x)) ∈ f−1(f(x))] = 0 instead of being negligible?

This condition is false for every function f . An adversary A that outputs an arbitrarily fixed
value x0 succeed in outputting a value in f−1(f(x)) with probability at least 1/2n.

2. What if we drop the input 1n to A in Equation 1.1?

Consider the function f(x) = |x|. In this case, we have thatm = log2 n, or n = 2m. Intuitively,
f should not be considered a one-way function, because it is easy to invert f . Namely, given
a value y any x such that |x| = y is such that x ∈ f−1(y). However, according to this
definition the adversary gets an m bit string as input, and hence is restricted to running in
time polynomial in m. Since each possible x is of size n = 2m, the adversary doesn’t even
have enough time to write down the answer! Thus, according to the flawed definition above,
f would be a one-way function.

Providing the attacker with 1n (n repetitions of the 1 bit) as additional input avoids this
issue. In particular, it allows the attacker to run in time polynomial in m and n.

A Candidate One-way Function. It is not known whether one-way functions exist. The
existence of one-way functions would imply that P ̸= NP (see Exercise 1.3), and so of course we
do not know of any concrete functions that have been proved to be one-way.

However, there are candidates of functions that could be one-way functions. One example is
based on the hardness of factoring. Multiplication can be done easily in O(n2) time, but so far no
polynomial time algorithm is known for factoring.

One candidate might be to say that given an input x, split x into its left and right halves x1 and
x2, and then output x1 × x2. However, this is not a one-way function, because with probability 3

4 ,
2 will be a factor of x1×x2, and in general the factors are small often enough that a non-negligible
number of the outputs could be factored in polynomial time.

To improve this, we again split x into x1 and x2, and use x1 and x2 as seeds in order to generate
large primes p and q, and then output pq. Since p and q are primes, it is hard to factor pq, and so
it is hard to retrieve x1 and x2. This function is believed to be one-way.

9

1.4 Composability of One-Way Functions

Given a one-way function f : {0, 1}n → {0, 1}n, is the function f2(x) = f(f(x)) also a one-way
function? Intuitively, it seems that if it is hard to invert f(x), then it would be just as hard to
invert f(f(x)). However, this intuition is incorrect and highlights the delicacy when working
with cryptographic assumptions and primitives. In particular, assuming one-way functions exists
we describe a one-way function f : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n such that f2 can be efficiently
inverted. Let g : {0, 1}n → {0, 1}n be a one-way function then we set f as follows:

f(x1, x2) =

{
0n : if x1 = 0n/2

0n/2∥g(x2) : otherwise

Two observations follow:

1. f2 is not one-way. This follows from the fact that for all inputs x1, x2 we have that f
2(x1, x2) =

0n. This function is clearly not one-way!

2. f is one-way. This can be argued as follows. Assume that there exists an adversary A such
that µA,f (n) = Pr

x
$←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] is non-negligible. Using such an A we

will describe a construction of adversary B such that µB,g(n) = Pr
x

$←{0,1}n
[B(1n, g(x)) ∈

g−1(g(x))] is also non-negligible. This would be a contradiction thus proving our claim.

Description of B: B on input y ∈ {0, 1}n outputs the n lower-order bits of A(12n, 0n∥y).
Observe that if A successfully inverts f then we have that B successfully inverts g. More
formally, we have that:

µB,g(n) = Pr
x

$←{0,1}n

[
A(12n, 0n||g(x)) ∈ {0, 1}n||g−1(g(x))

]
.

Note that

µA,f (2n) = Pr
x1,x2

$←{0,1}2n
[A(12n, f(x1, x2)) ∈ f−1(f(x̃))]

≤ Pr
x1

$←{0,1}n
[x1 = 0n] + Pr

x1
$←{0,1}n

[x1 ̸= 0n] Pr
x2

$←{0,1}n
[A(12n, 0n||g(x2)) ∈ {0, 1}n||g−1(g(x2))]

=
1

2n
+

(
1− 1

2n

)
· Pr
x2

$←{0,1}n
[A(12n, 0n||g(x2)) ∈ {0, 1}n||g−1(g(x2))]

=
1

2n
+

(
1− 1

2n

)
· µB,g(n).

Rewriting the above expression, we have that µB,g(n) =
µA,f (2n)− 1

2n

1− 1
2n

which is non-negligible

as long as µA,f (2n) is non-negligible.

1.5 Examples

The goal of this section is to illustrate the general strategy for the problems of the form,

“If f is one-way function, then show that f ′ (derived from f) is not a one-way function”

Some of the examples include:

10

• If f is a one-way function, prove that f ′ defined as f(f(·)) is not one-way.

• If f is a one-way function, prove that f ′ defined by dropping the first bit the output of f is
not one-way.

In order to give such a proof, we need to give an example of an one-way function f and show
that f ′ (derived from f) is not one-way. The general strategy for these types of problems is the
following:

1. Come up with a contrived function g and show that g is one-way.

2. Construct the new function g′ that is derived from g.

3. Show that g′ can be inverted with non-negligible probability and thus show that g′ is not
one-way.

The reason why we need to come-up with a contrived function is that for specific one-way function
f , f ′ (derived from f) could be one-way. To see why this is the case, consider a one-way function
f : {0, 1}n → {0, 1}n that is additionally injective. Then, one can show that f2(·) is in fact a
one-way function.1 On the other hand, in the previous section, we showed that there exists a
(contrived) function g such that g is one-way but g2 is not one-way. Hence, we might not always be
able to start from any one-way function f and show that f ′ (derived from f) is not one-way. The
first step where we come up a suitable g requires some ingenuity. Once that is done, the second
and the third steps would generally be not so hard.

To illustrate these three steps, let us consider a concrete example. We want to show that if f
is one-way then f ′ that is defined by dropping the first bit of the output of f is not one-way.

Step-1: Designing the function g. We want to come up with a (contrived) function g and
prove that it is one-way. Let us assume that there exists a one-way function h : {0, 1}n → {0, 1}n.
We define the function g : {0, 1}2n → {0, 1}2n as follows:

g(x∥y) =

{
0n∥y if x = 0n

1∥0n−1∥g(y) otherwise

Claim 1.1 If h is a one-way function, then so is g.

Proof. Assume for the sake of contradiction that g is not one-way. Then there exists a polynomial
time adversary A and a non-negligible function µ(·) such that:

Pr
x,y

[A(1n, g(x∥y)) ∈ g−1(g(x∥y))] = µ(n)

We will use such an adversary A to invert h with some non-negligible probability. This contradicts
the one-wayness of h and thus our assumption that g is not one-way function is false.

Let us now construct an B that uses A and inverts h. B is given 1n, h(y) for a randomly chosen
y and its goal is to output y′ ∈ h−1(h(y)) with some non-negligible probability. B works as follows:

1. It samples x← {0, 1}n randomly.

2. If x = 0n, it samples a random y′ ← {0, 1}n and outputs it.

1Try to prove this!

11

3. Otherwise, it runs A(10n−1∥h(y)) and obtains x′∥y′. It outputs y′.

Let us first analyze the running time of B. The first two steps are clearly polynomial (in n)
time. In the third step, B runs A and uses its output. Note that the running time of since A runs
in polynomial (in n) time, this step also takes polynomial (in n) time. Thus, the overall running
time of B is polynomial (in n).

Let us now calculate the probability that B outputs the correct inverse. If x = 0n, the probability
that y′ is the correct inverse is at least 1

2n (because it guesses y′ randomly and probability that a
random y′ is the correct inverse is ≥ 1/2n). On the other hand, if x ̸= 0n, then the probability that
B outputs the correct inverse is µ(n). Thus,

Pr[B(1n, h(y)) ∈ h−1(h(y))] ≥ Pr[x = 0n](
1

2n
) + Pr[x ̸= 0n]µ(n)

=
1

22n
+ (1− 1

2n
)µ(n)

≥ µ(n)− (
1

2n
− 1

22n
)

Since µ(n) is a non-negligible function and (1
2n −

1
22n

) is a negligible function, their difference
is non-negligible.2 This contradicts the one-wayness of h.

Step-2: Constructing g′. We construct the new function g′ : {0, 1}2n → {0, 1}2n−1 by dropping
the first bit of g. That is,

g′(x∥y) =

{
0n−1∥y if x = 0n

0n−1∥g(y) otherwise

Step-3: Inverting g′. We now want to prove that g′ is not one-way. That is, we want to design
an adversary C such that given 12n and g′(x∥y) for a randomly chosen x, y, it outputs an element
in the set g−1(g(x∥y). The description of C is as follows:

• On input 12n and g′(x∥y), the adversary C parses g′(x∥y) as 0n−1∥y.

• It outputs 0n∥y as the inverse.

Notice that g′(0n∥y) = 0n−1∥y. Thus, C succeeds with probability 1 and this breaks the one-wayness
of g′.

1.6 Hardness Amplification

In this section, we show that even a very weak form of one-way functions suffices from constructing
one-way functions as defined previously. For this section, we refer to this previously defined notion
as strong one-way functions.

Definition 1.6 (Weak One-Way Functions) A function f : {0, 1}n → {0, 1}m is said to be a
weak one-way function if:

- f is computable by a polynomial time machine, and

2Exercise: Prove that if α(·) is a non-negligible function and β(·) is a negligible function, then (α − β)(·) is a
non-negligible function.

12

- There exists a noticeable function αf (·) such that ∀ non-uniform PPT adversaries A we have
that

µA,f (n) = Pr
x

$←{0,1}n
[A(1n, f(x)) ∈ f−1(f(x))] ≤ 1− αf (n).

Theorem 1.1 If there exists a weak one-way function, then there exists a (strong) one-way func-
tion.

Proof. We prove the above theorem constructively. Suppose f : {0, 1}n → {0, 1}m is a weak
one-way function, then we prove that the function g : {0, 1}nq → {0, 1}mq for q = ⌈ 2n

αf (n)
⌉

g(x1, x2, · · · , xq) = f(x1)||f(x2)|| · · · ||f(xq),

is a strong one-way function.

Assume for the sake of contradiction that there exists an adversary B such that µB,g(nq) =
Pr

x
$←{0,1}nq

[B(1nq, g(x)) ∈ g−1(g(x))] is non-negligible. Then we use B to construct A (see Fig-

ure 1.1) that breaks f , namely µA,f (n) = Pr
x

$←{0,1}n
[A(1n, f(x)) ∈ f−1(f(x))] > 1 − αf (n) for

sufficiently large n.

1: loop T = 4n2

αf (n)µB,g(nq)
times

2: i
$← {1, 2, · · · , q}

3: x1, · · · , xi−1, xi, · · · , xq
$← {0, 1}n

4: (x′1, x
′
2, · · · , x′q) := B(f(x1), f(x2), · · · , f(xq))

5: if f(x′i) = y then
6: return x′i
7: return ⊥

Figure 1.1: Construction of A(1n, y)

Note that: (1) A(1n, y) iterates at most T = 4n2

αf (n)µB,g(nq)
times each call is polynomial time.

(2) µB,g(nq) is a non-negligible function. This implies that for infinite choices of n this value is
greater than some noticeable function. Together these two facts imply that for infinite choices of n
the running time of A is bounded by a polynomial function in n.

It remains to show that Pr
x

$←{0,1}n
[A(1n, f(x)) = ⊥] < αf (n) for arbitrarily large n. A natural

way to argue this is by showing that at least one execution of B should suffice for inverting f(x).
However, the technical challenge in proving this formally is that these calls to B aren’t independent.
Below we formalize this argument even when these calls aren’t independent.

Define the set S of “bad” x’s, which are hard to invert:

S :=

{
x

∣∣∣∣PrB [A inverts f(x) in a single iteration] ≤
αf (n)µB,g(nq)

4n

}
.

We start by proving that the size of S is small. More formally,

Pr
x

$←{0,1}n
[x ∈ S] ≤

αf (n)

2
.

13

Assume, for the sake of contradiction, that Pr
x

$←{0,1}n
[x ∈ S] > αf (n)

2 . Then we have that:

µB,g(nq) = Pr
(x1,··· ,xq)

$←{0,1}nq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq))]

= Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ ∀i : xi /∈ S]

+ Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ ∃i : xi ∈ S]

≤ Pr
x1,··· ,xq

[∀i : xi /∈ S] +
q∑

i=1

Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ xi ∈ S]

≤
(
1−

αf (n)

2

)q

+ q · Pr
x1,··· ,xq ,i

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ xi ∈ S]

=

(
1−

αf (n)

2

) 2n
αf (n)

+ q · Pr
x

$←{0,1}n,B
[A inverts f(x) in a single iteration ∧ x ∈ S]

≤e−n + q · Pr
x
[x ∈ S] · Pr[A inverts f(x) in a single iteration | x ∈ S]

≤e−n +
2n

αf (n)
· 1 ·

µB,g(nq) · αf (n)

4n

≤e−n +
µB,g(nq)

2
.

Hence µB,g(nq) ≤ 2e−n, contradicting with the fact that µB,g is non-negligible. Then we have

Pr
x

$←{0,1}n
[A(1n, f(x)) = ⊥]

=Pr
x
[x ∈ S] + Pr

x
[x /∈ S] · Pr[B fails to invert f(x) in every iteration|x /∈ S]

≤
αf (n)

2
+ (Pr[B fails to invert f(x) a single iteration|x /∈ S])T

≤
αf (n)

2
+

(
1−

µA,g(nq) · αf (n)

4n

)T

≤
αf (n)

2
+ e−n ≤ αf (n)

for sufficiently large n. This concludes the proof.

1.7 Levin’s One-Way Function

Theorem 1.2 If there exists a one-way function, then there exists an explicit function f that is
one-way (constructively).

Lemma 1.2 If there exists a one-way function computable in time nc for a constant c, then there
exists a one-way function computable in time n2.

Proof. Let f : {0, 1}n → {0, 1}n be a one-way function computable in time nc. Construct
g : {0, 1}n+nc → {0, 1}n+nc

as follows:

g(x, y) = f(x)||y

14

where x ∈ {0, 1}n, y ∈ {0, 1}nc
. g(x, y) takes time 2nc, which is linear in the input length.

We next show that g(·) is one-way. Assume for the purpose of contradiction that there exists
an adversary A such that µA,g(n+ nc) = Pr

(x,y)
$←{0,1}n+nc [A(1n+nc

, g(x, y)) ∈ g−1(g(x, y))] is non-
negligible. Then we use A to construct B such that µB,f (n) = Pr

x
$←{0,1}n

[B(1n, f(x)) ∈ f−1(f(x))]
is also non-negligible.

B on input z ∈ {0, 1}n, samples y
$← {0, 1}nc

, and outputs the n higher-order bits ofA(1n+nc
, z||y).

Then we have

µB,g(n) = Pr
x

$←{0,1}n,y $←{0,1}nc

[
A(1n+nc

, f(x)||y) ∈ f−1(f(x))||{0, 1}nc]
≥Pr

x,y

[
A(1n+nc

, g(x, y)) ∈ f−1(f(x))||y
]

=Pr
x,y

[
A(1n+nc

, g(x, y)) ∈ g−1(g(x, y))
]

is non-negligible.

Proof. [of Theorem 1.2] We first construct a weak one-way function h : {0, 1}n → {0, 1}n as
follows:

h(M,x) =

{
M ||M(x) if M(x) takes no more than |x|2 steps
M ||0 otherwise

where |M | = log n, |x| = n− log n (interpreting M as the code of a machine and x as its input). If
h is weak one-way, then we can construct a one-way function from h as we discussed in Section 1.6.

It remains to show that if one-way functions exist, then h is a weak one-way function, with
αh(n) =

1
n2 . Assume for the purpose of contradiction that there exists an adversary A such that

µA,h(n) = Pr
(M,x)

$←{0,1}n
[A(1n, h(M,x)) ∈ h−1(h(M,x))] ≥ 1 − 1

n2 for all sufficiently large n. By

the existence of one-way functions and Lemma 1.2, there exists a one-way function M̃ that can be
computed in time n2. Let M̃ be the uniform machine that computes this one-way function. We
will consider values n such that n > 2|M̃ |. In other words for these choices of n, M̃ can be described
using log n bits. We construct B to invert M̃ : on input y outputs the (n − log n) lower-order bits
of A(1n, M̃ ||y). Then

µB,M̃ (n− log n) = Pr
x

$←{0,1}n−logn

[
A(1n, M̃ ||M̃(x)) ∈ {0, 1}logn||M̃−1(M̃((x))

]
≥ Pr

x
$←{0,1}n−logn

[
A(1n, M̃ ||M̃(x)) ∈ M̃ ||M̃−1(M̃((x))

]
.

Observe that for sufficiently large n it holds that

1− 1

n2
≤µA,h(n)

= Pr
(M,x)

$←{0,1}n

[
A(1n, h(M,x)) ∈ h−1(h(M,x))

]
≤Pr

M
[M = M̃] · Pr

x

[
A(1n, M̃ ||M̃(x)) ∈ M̃ ||M̃−1(M̃((x))

]
+ Pr

M
[M ̸= M̃]

≤ 1

n
· µB,M̃ (n− log n) +

n− 1

n
.

Hence µB,M̃ (n− log n) ≥ n−1
n for sufficiently large n which is a contradiction.

15

Exercises

Exercise 1.1 If µ(·) and ν(·) are negligible functions then show that µ(·) · ν(·) is a negligible
function.

Exercise 1.2 If µ(·) is a negligible function and f(·) is a function polynomial in its input then
show that µ(f(·))3 are negligible functions.

Exercise 1.3 Prove that the existence of one-way functions implies P ̸= NP .

Exercise 1.4 Prove that there is no one-way function f : {0, 1}n → {0, 1}⌊log2 n⌋.

Exercise 1.5 Let f : {0, 1}n → {0, 1}n be any one-way function then is f ′(x)
def
= f(x) ⊕ x neces-

sarily one-way?

Exercise 1.6 Prove or disprove: If f : {0, 1}n → {0, 1}n is a one-way function, then g : {0, 1}n →
{0, 1}n−logn is a one-way function, where g(x) outputs the n− log n higher order bits of f(x).

Exercise 1.7 Explain why the proof of Theorem 1.1 fails if the attacker A in Figure 1.1 sets i = 1

and not i
$← {1, 2, · · · , q}.

Exercise 1.8 Given a (strong) one-way function construct a weak one-way function that is not a
(strong) one-way function.

Exercise 1.9 Let f : {0, 1}n → {0, 1}n be a weak one-way permutation (a weak one way function
that is a bijection). More formally, f is a PPT computable one-to-one function such that ∃ a
constant c > 0 such that ∀ non-uniform PPT machine A and ∀ sufficiently large n we have that:

Pr
x,A

[A(f(x)) ̸∈ f−1(f(x))] > 1

nc

Show that g(x) = fT (x) is not a strong one way permutation. Here fT denotes the T times self
composition of f and T is a polynomial in n.

Interesting follow up reading if interested: With some tweaks the function above can be made
a strong one-way permutation using explicit constructions of expander graphs. See Section 2.6 in
http: // www. wisdom. weizmann. ac. il/ ~ oded/ PSBookFrag/ part2N. ps

3Assume that µ and f are such that µ(f(·)) takes inputs from Z+ and outputs values in [0, 1].

16

Chapter 2

Pseudorandomness

2.1 Hard Core Bit

We start by asking the following question: Is it possible to concentrate the strength of a one-way
function into one bit? In particular, given a one-way function f , does there exist one bit that can
be computed efficiently from the input x, but is hard to compute given f(x)?

Definition 2.1 (Hard Core Bit) Let f : {0, 1}n → {0, 1}n be a one-way function. B : {0, 1}n →
{0, 1} is a hard core bit of f if:

- B is computable by a polynomial time machine, and

- ∀ non-uniform PPT adversaries A we have that

Pr
x

$←{0,1}n
[A(1n, f(x)) = B(x)] ≤ 1

2
+ negl(n).

A simple example. Let f be a one-way function. Consider the one-way function g(b, x) = 0||f(x)
and a hard core bit B(b, x) = b. Intuitively, the value g(b, x) does not reveal any information about
the first bit b, thus no information about the value B(b, x) can be ascertained. Hence A cannot
predict the first bit with a non-negligible advantage than a random guess. However, we are more
interested in the case where the hard core bit is hidden because of computational hardness and not
information theoretic hardness.

Remark 2.1 Given a one-way function f , we can construct another one-way function g with a
hard core bit. However, we may not be able to find a hard core bit for f . In fact, it is an open
question whether a hard core bit exists for every one-way function.

Intuitively, if a function f is one-way, there should be a particular bit in the input x that is
hard to compute given f(x). But this is not true:

Claim 2.1 If f : {0, 1}n → {0, 1}n is a one-way function, then there exists a one-way function
g : {0, 1}n+logn → {0, 1}n+logn such that ∀1 ≤ i ≤ n + log n, Bi(x) = xi is not a hard core bit,
where xi is the ith bit of x.

Proof. Define g : {0, 1}n+log(n) → {0, 1}n+log(n) as follows.

g(x, y) = f(xȳ)||xy||y,

17

where |x| = n, |y| = log n, xȳ is all bits of x except the yth bit, xy is the yth bit of x.

First, one can show that g is still a one-way function. (We leave this as an exercise!) We
next show that Bi is not a hard core bit for ∀1 ≤ i ≤ n (clearly Bi is not a hard core bit for
n+ 1 ≤ i ≤ n+ log n). Construct an adversary Ai(1

n+logn, f(xȳ)||xy||y) that “breaks” Bi:

- If y ̸= i then output a random bit;

- Otherwise output xy.

Pr
x,y

[A(1n+logn, g(x, y)) = Bi(x)]

=Pr
x,y

[A(1n+logn, f(xȳ)||xy||y) = xi]

=
n− 1

n
· 1
2
+

1

n
· 1 =

1

2
+

1

2n
.

Hence Ai can guess the output of Bi with greater than 1
2 + negl(n) probability.

Application: Coin tossing over the phone. We next describe an application of hard core
bits to coin tossing. Consider two parties trying to perform a coin tossing over the phone. In this
setting the first party needs to declare its choice as the second one flips the coin. However, how can
the first party trust the win/loss response from the second party? In particular, if the first party
calls out “head” and then the second party can just lie that it was “tails.” We can use hard core
bit of a (one-to-one) one-way function to enable this applications.

Let f be a (one-to-one) one-way function and B be a hard core bit for f . Consider the following
protocol:

- Party P1 samples x from {0, 1}n uniformly at random and sends y, where y = f(x), to party
P2.

- P2 sends back a random bit b sampled from {0, 1}.

- P1 sends back (x,B(x)) to P2. P2 aborts if f(x) ̸= y.

- Both parties output B(x)⊕ b.

Note that P2 cannot guess B(x) with a non-negligible advantage than 1/2 as he sends back his
b. On the other hand, P1 cannot flip the value B(x) once it has sent f(x) to P2 because f is
one-to-one.

2.2 Hard Core Bit of any One-Way Functions

We now show that a slight modification of every one-way function has a hard core bit. More
formally,

Theorem 2.1 Let f : {0, 1}n → {0, 1}n be a one-way function. Define a function g : {0, 1}2n →
{0, 1}2n as follows:

g(x, r) = f(x)||r,

where |x| = |r| = n. Then we have that g is one-way and that it has a hard core bit, namely
B(x, r) =

∑n
i=1 xiri mod 2.

18

Remark 2.2 If f is a (one-to-one) one-way function, then g is also a (one-to-one) one-way func-
tion with hard core bit B(·).

Proof. We leave it as an exercise to show that g is a one-way function and below we will prove
that the function B(·) describe a hard core bit of g. More specifically, we need to show that if
there exists a non-uniform PPT A s.t. Prx,r[A(12n, g(x, r)) = B(x, r)] ≥ 1

2 + ϵ(n), where ϵ is non-
negligible, then there exists a non-uniform PPT B such that Prx,r[B(12n, g(x, r)) ∈ g−1(g(x, r))] is
non-negligible. Below we use E to denote the event that A(12n, g(x, r)) = B(x, r). We will provide
our proof in a sequence of three steps of complexity: (1) the super simple case where we restrict to
A such that Prx,r[E] = 1, (2) the simple case where we restrict to A such that Prx,r[E] ≥ 3

4 + ϵ(n),
and finally (3) the general case with Prx,r[E] ≥ 1

2 + ϵ(n).

Super simple case. Suppose that A breaks the B with perfect accuracy:

Pr
x,r

[E] = 1.

We now construct B that inverts g with perfect accuracy. Let ei be an n-bit string 0 · · · 010 · · · 0,
where only the i-th bit is 1, the rest are all 0. On input f(x)||R, B does the following:

for i = 1 to n do
x′i ← A(12n, f(x)||ei)

return x′1 · · ·x′n||R
Observe that B(x, ei) =

∑n
j=1 xje

i
j = xi. Therefore, the probability that B inverts a single bit

successfully is,

Pr
x

[
A(12n, f(x)||ei) = xi

]
= Pr

x

[
A(12n, f(x)||ei) = B(x, ei)

]
= 1.

Hence Prx,r[B(12n, g(x, r)) = (x, r)] = 1.

Simple case. Next moving on to the following more demanding case.

Pr
x,r

[E] ≥ 3

4
+ ϵ(n),

where ϵ is non-negligible. Just like the super simple case, we describe our algorithm of B for
inverting g. On input f(x)||R, B proceeds as follows:

for i = 1 to n do
for t = 1 to T = n

2ϵ(n)2
do

r
$← {0, 1}n

xti ← A(f(x)||r)⊕A(f(x)||r + ei)

x′i ← the majority of {x1i , · · · , xTi }
return x′1 · · ·x′n||R

Correctness of B given that A calls output the correct answer follows by observing that B(x, r)⊕

19

B(x, r ⊕ ei) = xi:

B(x, r)⊕B(x, r ⊕ ei)

=
∑
j

xjrj +
∑
j

xj(rj ⊕ eij) mod 2

=
∑
j ̸=i

(xjrj + xjrj) + xiri + xi(ri + 1) mod 2

=xi.

The key technical challenge in proving that B inverts g with non-negligible probability arises from
the fact that the calls to A made during one execution of B are not independent. In particular, all
calls to A share the same x and the class A(f(x)||r) and A(f(x)||r+ ei) use correlated randomness
as well. We solve the first issue by showing that exists a large choices of values of x for which A still
works with large probability. The later issue of lack of independent of A(f(x)||r) and A(f(x)||r+ei)
will be solved using a union bound.

Formally, define the set G of “good” x’s, which are easy for A to predict:

G :=

{
x

∣∣∣∣Prr [E] ≥ 3

4
+
ϵ(n)

2

}
.

We start by proving that the size of G is not small. More formally we claim that,

Pr
x

$←{0,1}n
[x ∈ G] ≥ ϵ(n)

2
.

Assume, that Pr
x

$←{0,1}n
[x ∈ G] < ϵ(n)

2 . Then we have the following contradiction:

3

4
+ ϵ(n) ≤Pr

x,r
[E]

=Pr
x
[x ∈ G] Pr

r
[E|x ∈ G] + Pr

x
[x /∈ G] Pr

r
[E|x /∈ G]

<
ϵ(n)

2
· 1 + 1 ·

(
3

4
+
ϵ(n)

2

)
=

3

4
+ ϵ(n).

For and fixed x ∈ G:

Pr
r

[
A(f(x), r)⊕A(f(x), r + ei) = xi

]
=Pr

r
[Both A’s are correct] + Pr

r
[Both A’s are wrong]

≥Pr
r
[Both A’s are correct]

≥1− 2 · Pr
r
[Either A is correct]

≥1− 2

(
1

4
− ϵ(n)

2

)
=

1

2
+ ϵ(n).

Let Y t
i be the indicator random variable that xti = xi (namely, Y t

i = 1 with probability Pr[xti = xi]
and Y t

i = 0 otherwise). Note that Y 1
i , · · · , Y T

i are independent and identical random variables,

20

and for all t ∈ {1, . . . , T} we have that Pr[Y t
i = 1] = Pr[xti = xi] ≥ 1

2 + ϵ(n). Next we argue that
majority of x1i , . . . x

T
i coincides with xi with high probability.

Pr[x′i ̸= xi] =Pr

[
T∑
t=1

Y t
i ≤

T

2

]

=Pr

[
T∑
t=1

Y t
i −

(
1

2
+ ϵ(n)

)
T ≤ T

2
−
(
1

2
+ ϵ(n)

)
T

]

≤Pr

[∣∣∣∣∣
T∑
t=1

Y t
i −

(
1

2
+ ϵ(n)

)
T

∣∣∣∣∣ ≥ ϵ(n)T
]

Let X1, · · · , Xm be i.i.d. random variables taking values 0 or 1. Let Pr[Xi = 1] = p.

By Chebyshev’s Inequality, Pr
[∣∣∣∑Xi − pm

∣∣∣ ≥ δm] ≤ 1

4δ2m
.

≤ 1

4ϵ(n)2T
=

1

2n
.

Then, completing the argument, we have

Pr
x,r

[B(12n, g(x, r)) = (x, r)]

≥Pr
x
[x ∈ G] Pr[x′1 = x1, · · ·x′n = xn|x ∈ G]

≥ϵ(n)
2
·

(
1−

n∑
i=1

Pr[x′i ̸= xi|x ∈ G]

)

≥ϵ(n)
2
·
(
1− n · 1

2n

)
=
ϵ(n)

4
.

Real Case. Now, we describe the final case where Prx,r[E] ≥ 1
2+ϵ(n), where ϵ(·) is a non-negligible

function. The key technical challenge in this case is that we cannot make two related calls to A
as was done in the simple case above. However, just using one call to A seems insufficient. The
key idea is to just guess one of those values. Very surprisingly this idea along with careful analysis
magically works out. Just like the previous two case we start by describing the algorithm B. On
input f(x)||R, B proceeds as follows:

T = 2n
ϵ(n)2

for ℓ = 1 to log T do

sℓ
$← {0, 1}n

bℓ
$← {0, 1}

for i = 1 to n do
for all L ⊆ {1, 2, · · · , log T} do

SL :=
⊕

j∈L sj
BL :=

⊕
j∈L bj

xLi ← BL ⊕A(f(x)||SL + ei)

x′i ← the majority of {x∅i , · · · , x
[log T]
i }

return x′1 · · ·x′n||R

21

The idea is the following. Let bℓ guess the value of B(x, sℓ), and with probability 1
T all the bℓ’s

are correct. In that case, it is easy to see that BL = B(x, SL) for every L. If we follow the same
argument as above, then it remains to bound the probability that A(f(x)||SL+ei) = B(x, SL+e

i).

However there is a subtle issue. Now the events Y ∅i , · · · , Y
[log T]
i are not independent any more. But

we can still show that they are pairwise independent, and the Chebyshev’s Inequality still holds.
Now we give the formal proof.
Just as in the simple case, we define the set G as

G :=

{
x

∣∣∣∣Prr [E] ≥ 1

2
+
ϵ(n)

2

}
,

and with an identical argument we obtain that

Pr
x

$←{0,1}n
[x ∈ G] ≥ ϵ(n)

2
.

Correctness of B follows from the fact in case bℓ = B(x, sℓ) for every ℓ ∈ [log T] then ∀L ⊆ [log T],
it holds that (we use the notation (s)k to denote the kth bit of s)

B(x, SL) =
n∑

k=1

xk

⊕
j∈L

sj


k

=
n∑

k=1

xk
∑
j∈L

(sj)k =
∑
j∈L

n∑
k=1

xk (sj)k =
∑
j∈L

B(x, sj) =
∑
j∈L

bj = BL.

Next given that bℓ = B(x, sℓ),∀ℓ ∈ [log T] and x ∈ G we bound the probability,

Pr
r

[
BL ⊕A(f(x)||SL + ei) = xi

]
=Pr

r

[
B(x, SL)⊕A(f(x)||SL + ei) = xi

]
=Pr

r

[
A(f(x)||SL + ei) = B(x, SL + ei)

]
≥1

2
+
ϵ(n)

2
.

For bℓ = B(x, sℓ), ∀ℓ ∈ [log T] and x ∈ G, let Y L
i be the indicator random variable that xLi = xi.

Notice that Y ∅i , · · · , Y
[log T]
i are pairwise independent and Pr[Y L

i = 1] = Pr[xLi = xi] ≥ 1
2 + ϵ(n)

2 .

Pr[x′i ̸= xi] =Pr

 ∑
L⊆[log T]

Y L
i ≤

T

2


=Pr

 ∑
L⊆[log T]

Y L
i −

(
1

2
+
ϵ(n)

2

)
T ≤ T

2
−
(
1

2
+
ϵ(n)

2

)
T


≤Pr

∣∣∣∣∣∣
∑

L⊆[log T]

Y L
i −

(
1

2
+
ϵ(n)

2

)
T

∣∣∣∣∣∣ ≥ ϵ(n)

2
T


(By Theorem 2.2)

≤ 1

4
(
ϵ(n)
2

)2
T

=
1

2n
.

22

Then, completing the proof, we have that

Pr
x,r

[B(12n, g(x, r)) = (x, r)]

≥Pr [∀ℓ ∈ [log T], bℓ = B(x, sℓ)] Pr
x
[x ∈ G] Pr[x′1 = x1, · · ·x′n = xn|∀ℓ ∈ [log T], bℓ = B(x, sℓ), x ∈ G]

≥ 1

T
· ϵ(n)

2
·

(
1−

n∑
i=1

Pr[x′i ̸= xi|∀ℓ ∈ [log T], bℓ = B(x, sℓ), x ∈ G]

)

≥ϵ(n)
2

2n
· ϵ(n)

2
·
(
1− n · 1

2n

)
=
ϵ(n)3

8n
.

Pairwise Independence and Chebyshev’s Inequality. Here, for the sake of completeness, we
prove the Chebyshev’s Inequality.

Definition 2.2 (Pairwise Independence) A collection of random variables {X1, · · · , Xm} is
said to be pairwise independent if for every pair of random variables (Xi, Xj), i ̸= j and every
pair of values (vi, vj), it holds that

Pr[Xi = vi, Xj = vj] = Pr[Xi = vi] Pr[Xj = vj].

Theorem 2.2 (Chebyshev’s Inequality) Let X1, . . . , Xm be pairwise independent and identi-
cally distributed binary random variables. In particular, for every i ∈ [m], Pr[Xi = 1] = p for some
p ∈ [0, 1] and Pr[Xi = 0] = 1− p. Then it holds that

Pr

[∣∣∣∣∣
m∑
i=1

Xi − pm

∣∣∣∣∣ ≥ δm
]
≤ 1

4δ2m
.

Proof. Let Y =
∑

iXi. Then

Pr

[∣∣∣∣∣
m∑
i=1

Xi − pm

∣∣∣∣∣ > δm

]
= Pr

(m∑
i=1

Xi − pm

)2

> δ2m2


≤

E
[
|Y − pm|2

]
δ2m2

=
Var(Y)

δ2m2

Observe that

Var(Y) = E
[
Y 2
]
− (E[Y])2

=

m∑
i=1

m∑
j=1

(E [XiXj]− E [Xi]E [Xj])

By pairwise independence, for i ̸= j, E [XiXj] = E [Xi]E [Xj].

=

m∑
i=1

E
[
X2

i

]
− E [Xi]

2

= mp(1− p).

23

Hence

Pr

[∣∣∣∣∣
m∑
i=1

Xi − pm

∣∣∣∣∣ ≥ δm
]
≤ mp(1− p)

δ2m2
≤ 1

δ2m
.

2.3 Computational Indistinguishability

What should it mean for a computationally bounded adversary to be able to distinguish two distri-
butions from each other? It is tricky to define for a single pair of distributions because the length of
the output of a random variable is a constant. Therefore, in order for “computationally bounded”
adversaries to make sense, we have to work with infinite families of probability distributions.

Definition 2.3 An ensemble of probability distributions is a sequence of random variables {Xn}n∈N.
Two ensembles of probability distributions {Xn}n and {Yn}n (which are samplable in time polyno-
mial in n) are said to be computationally indistinguishable if for all (non-uniform) PPT machines
A, the quantities

p(n) := Pr[A(1n, Xn) = 1] =
∑
x

Pr[Xn = x] Pr[A(1n, x) = 1]

and
q(n) := Pr[A(1n, Yn) = 1] =

∑
y

Pr[Yn = y] Pr[A(1n, y) = 1]

differ by a negligible amount; i.e. |p(n)− q(n)| is negligible in n. This equivalence is denoted by

{Xn}n ≈ {Yn}n

We now prove some properties of computationally indistinguishable ensembles that will be useful
later on.

Lemma 2.1 (Sunglass Lemma) If {Xn}n ≈ {Yn}n and P is a PPT machine, then

{P (Xn)}n ≈ {P (Yn)}n

Proof. Consider an adversary A that can distinguish {P (Xn)}n from {P (Yn)}n with non-negligible
probability. Then the adversary A ◦ P can distinguish {Xn}n from {Yn}n with the same non-
negligible probability. Since P and A are both PPT machines, the composition is also a PPT
machine. This proves the contrapositive of the lemma.

Lemma 2.2 (Hybrid Argument) For a polynomial t : Z+ → Z+ let the t-product of {Zn}n be

{Z(1)
n , Z(2)

n , . . . , Z(t(n))
n }n

where the Z
(i)
n s are independent copies of Zn. If

{Xn}n ≈ {Yn}n

then
{X(1)

n , . . . , X(t)
n }n ≈ {Y (1)

n , . . . , Y (t)
n }n

as well.

24

Proof. Consider the set of tuple random variables

H(i,t)
n = (Y (1)

n , . . . , Y (i)
n , X(i+1)

n , X(i+2)
n , . . . , X(t)

n)

for integers 0 ≤ i ≤ t. Assume, for the sake of contradiction, that there is a PPT adversary

A that can distinguish between {H(0,t)
n }n and {H(t,t)

n }n with non-negligible probability difference

r(n). Suppose that A returns 1 with probability ϵi when it runs on samples from H
(i,t)
n . By def-

inition, |ϵt − ϵ0| ≥ r(n). By the Triangle Inequality and the Pigeonhole Principle, there is some
index k for which |ϵk+1 − ϵk| ≥ r(n)/t. However, using Sunglass Lemma, note that the computa-

tional indistinguishability of Xn and Yn implies that {H(k,t)
n }n and {H(k+1,t)

n }n are computationally
indistinguishable. This is a contradiction.

2.4 Pseudorandom Generators

Now, we can define pseudorandom generators, which intuitively generates a polynomial number of
bits that are indistinguishable from being uniformly random:

Definition 2.4 A function G : {0, 1}n → {0, 1}n+m with m = poly(n) is called a pseudorandom
generator if

• G is computable in polynomial time.

• Un+m ≈ G(Un), where Uk denotes the uniform distribution on {0, 1}k.

2.4.1 PRG Extension

In this section we show that any pseudorandom generator that produces one bit of randomness can
be extended to create a polynomial number of bits of randomness.

Construction 2.1 Given a PRG G : {0, 1}n → {0, 1}n+1, we construct a new PRG F : {0, 1}n →
{0, 1}n+l as follows (l is polynomial in n).

(a) Input: S0
$←− {0, 1}n.

(b) ∀i ∈ [l] = {1, 2, · · · , l}, (σi, Si) := G(Si−1), where σi ∈ {0, 1}, Si ∈ {0, 1}n .

(c) Output: σ1σ2 · · ·σlSl.

Theorem 2.3 The function F constructed above is a PRG.

Proof. We prove this by hybrid argument. Define the hybrid Hi as follows.

(a) Input: S0
$←− {0, 1}n.

(b) σ1, σ2, · · · , σi
$←− {0, 1}, Si ← S0.

∀j ∈ {i+ 1, i+ 2, · · · , l}, (σj , Sj) := G(Sj−1), where σj ∈ {0, 1}, Sj ∈ {0, 1}n .

(c) Output: σ1σ2 · · ·σlSl.

25

Note that H0 ≡ F , and Hl ≡ Un+l.
Assume for the sake of contradiction that there exits a non-uniform PPT adversary A that can

distinguish H0 form Hl. Define ϵi := Pr[A(1n, Hi) = 1] for i = 0, 1, · · · , l. Then there exists a
non-negligible function v(n) such that |ϵ0 − ϵl| ≥ v(n). Since

|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|+ · · ·+ |ϵl−1 − ϵl| ≥ |ϵ0 − ϵl| ≥ v(n),

there exists k ∈ {0, 1, · · · , l − 1} such that

|ϵk − ϵk+1| ≥
v(n)

l
.

l is polynomial in n, hence v(n)
l is also a non-negligible function. That is to say, A can distinguish

Hk from Hk+1. Then we use A to construct an adversary B that can distinguish Un+1 from G(Un)
(which leads to a contradiction): On input T ∈ {0, 1}n+1 (T could be either from Un+1 or G(Un)),
B proceeds as follows:

• σ1, σ2, · · · , σk
$←− {0, 1}, (σk+1, Sk+1)← T .

• ∀j ∈ {k + 2, k + 3, · · · , l}, (σj , Sj) := G(Sj−1), where σj ∈ {0, 1}, Sj ∈ {0, 1}n .

• Output: A(1n, σ1σ2 · · ·σlSl).

First, since A and G are both PPT computable, B is also PPT computable.

Second, if T ← G(Un), then σ1σ2 · · ·σlSl is the output of Hk; if T
$← Un+1, then σ1σ2 · · ·σlSl

is the output of Hk+1. Hence∣∣Pr[B(1n, G(Un)) = 1]− Pr[B(1n, Un+1) = 1]
∣∣

=
∣∣Pr[A(1n, Hk) = 1]− Pr[A(1n, Hk+1) = 1]

∣∣
=|ϵk − ϵk+1| ≥

v(n)

l
.

2.4.2 PRG from OWP (One-Way Permutations)

In this section we show how to construct pseudorandom generators under the assumption that
one-way permutations exist.

Construction 2.2 Let f : {0, 1}n → {0, 1}n be a OWP. We construct G : {0, 1}2n → {0, 1}2n+1

as

G(x, r) = f(x)||r||B(x, r),

where x, r ∈ {0, 1}n, and B(x, r) is a hard core bit for the function g(x, r) = f(x)||r.

Remark 2.3 The hard core bit B(x, r) always exists. Recall Theorem 2.1,

B(x, r) =

(
n∑

i=1

xiri

)
mod 2

is a hard core bit.

26

Theorem 2.4 The G constructed above is a PRG.

Proof. Assume for the sake of contradiction that G is not PRG. We construct three ensembles of
probability distributions:

H0 := G(U2n) = f(x)||r||B(x, r), where x, r
$←− {0, 1}n;

H1 := f(x)||r||σ, where x, r $←− {0, 1}n, σ $←− {0, 1};
H2 := U2n+1.

Since G is not PRG, there exists a non-uniform PPT adversary A that can distinguish H0 from
H2. Since f is a permutation, H1 is uniformly distributed in {0, 1}2n+1, i.e., H1 ≡ H2. Therefore,
A can distinguish H0 from H1, that is, there exists a non-negligible function v(n) satisfying∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]

∣∣ ≥ v(n).
Next we will construct an adversary B that “breaks” the hard core bit (which leads to a con-

tradiction). Define a new ensemble of probability distribution

H ′1 = f(x)||r||(1−B(x, r)), where x, r
$←− {0, 1}n.

Then we have

Pr[A(H1) = 1] =Pr[σ = B(x, r)] Pr[A(H0) = 1] + Pr[σ = 1−B(x, r)] Pr[A(H ′1) = 1]

=
1

2
Pr[A(H0) = 1] +

1

2
Pr[A(H ′1) = 1].

Hence

Pr[A(H1) = 1]− Pr[A(H0) = 1] =
1

2
Pr[A(H ′1) = 1]− 1

2
Pr[A(H0) = 1],

1

2

∣∣Pr[A(H0) = 1]− Pr[A(H ′1) = 1]
∣∣ = |Pr[A(H1) = 1]− Pr[A(H0) = 1]| ≥ v(n),∣∣Pr[A(H0) = 1]− Pr[A(H ′1) = 1]
∣∣ ≥ 2v(n).

Without loss of generality, we assume that

Pr[A(H0) = 1]− Pr[A(H ′1) = 1] ≥ 2v(n).

Then we construct B as follows:

B(f(x)||r) :=

{
σ, if A(f(x)||r||σ) = 1

1− σ, if A(f(x)||r||σ) = 0
,

where σ
$←− {0, 1}. Then we have

Pr[B(f(x)||r) = B(x, r)]

=Pr[σ = B(x, r)] Pr[A(f(x)||r||σ) = 1|σ = B(x, r)]+

Pr[σ = 1−B(x, r)] Pr[A(f(x)||r||σ) = 0|σ = 1−B(x, r)]+

=
1

2

(
Pr[A(f(x)||r||B(x, r)) = 1] + 1− Pr[A(f(x)||r||1−B(x, r)) = 1]

)
=
1

2
+

1

2

(
Pr[A(H0) = 1]− Pr[A(H ′1) = 1]

)
≥1

2
+ v(n).

Contradiction with the fact that B is a hard core bit.

27

2.5 Pseudorandom Functions

In this section, we first define pseudorandom functions, and then show how to construct a pseudo-
random function from a pseudorandom generator.

Considering the set of all functions f : {0, 1}n → {0, 1}n, there are (2n)2
n
of them. To describe

a random function in this set we need n · 2n bits. Intuitively, a pseudorandom function is one that
cannot be distinguished from a random one, but needs much fewer bits (e.g., polynomial in n) to be
described. Note that we restrict the distinguisher to only being allowed to ask the function poly(n)
times and decide whether it is random or pseudorandom.

2.5.1 Definitions

Definition 2.5 (Function Ensemble) A function ensemble is a sequence of random variables
F1, F2, · · · , Fn, · · · denoted as {Fn}n∈N such that Fn assumes values in the set of functions mapping
n-bit input to n-bit output.

Definition 2.6 (Random Function Ensemble) We denote a random function ensemble by {Rn}n∈N.

Definition 2.7 (Efficiently Computable Function Ensemble) A function ensemble is called
efficiently computable if

(a) Succinct: ∃ a PPT algorithm I and a mapping ϕ from strings to functions such that ϕ(I(1n))
and Fn are identically distributed. Note that we can view I as the description of the function.

(b) Efficient: ∃ a poly-time machine V such that V (i, x) = fi(x) for every x ∈ {0, 1}n, where i
is in the range of I(1n), and fi = ϕ(i).

Definition 2.8 (Pseudorandom Function Ensemble) A function ensemble F = {Fn}n∈N is
pseudorandom if for every non-uniform PPT oracle adversary A, there exists a negligible function
ϵ(n) such that ∣∣Pr[AFn(1n) = 1]− Pr[ARn(1n) = 1]

∣∣ ≤ ϵ(n).
Here by saying “oracle” it means that A has “oracle access” to a function (in our definition, the
function is Fn or Rn), and each call to that function costs 1 unit of time.

Note that we will only consider efficiently computable pseudorandom ensembles in the following.

2.5.2 Construction of PRF from PRG

Construction 2.3 Given a PRG G : {0, 1}n → {0, 1}2n, let G0(x) be the first n bits of G(x),
G1(x) be the last n bits of G(x). We construct F (K) : {0, 1}n → {0, 1}n as follows.

F (K)
n (x1x2 · · ·xn) := Gxn(Gxn−1(· · · (Gx1(K)) · · ·)),

where K ∈ {0, 1}n is the key to the pseudorandom function. Here i is an n-bit string, which is the
seed of the pseudorandom function.

The construction can be viewed as a binary tree of depth n, as shown in Figure 2.1.

Theorem 2.5 The function ensemble {Fn}n∈N constructed above is pseudorandom.

28

𝑖𝑖
𝐺𝐺0 𝐺𝐺1

𝐺𝐺0 𝐺𝐺1

𝑥𝑥1 = 0

𝑥𝑥2 = 1

Output

(random 𝑛𝑛-bit string)

Figure 2.1: View the construction as a binary tree

Proof. Assume for the sake of contradiction that {Fn}n∈N is not PRG. Then there exists a non-
uniform PPT oracle adversary A that can distinguish {Fn}n∈N from {Rn}n∈N. Below, via a hybrid
argument, we prove that this contradicts the fact that G is a PRG.

Consider the sequence of hybrids Hi for i ∈ {0, 1, · · · , n} where the hybrid i is defined as follows:

H
(K)
n,i (x1x2 . . . xn) := Gxn(Gxn−1(· · · (Gxi+1(K(xixi−1 . . . x1))) · · ·)),

where K is a random function from {0, 1}i to {0, 1}n. Intuitively, hybrid Hi corresponds to a binary
tree of depth n where the nodes of levels 0 to i correspond to random values and the nodes at levels
i + 1 to n correspond to pseudorandom values. By inspection, observe that hybrids H0 and Hn

are identical to a pseudorandom function and a random function, respectively. There it suffices to
prove that hybrids Hi and Hi+1 are computationally indistinguishable for each i ∈ {0, 1, · · · , n}.

We show that Hi and Hi+1 are indistinguishable by considering a sequence of sub-hybrids Hi,j

for j ∈ {0, . . . qi+1}, where qi+1 is the number of the distinct i− bit prefixes of the queries of A.1
We define hybrid Hi,j for j = 0 to be same as hybrid Hi. Additionally, for j > 0 hybrid Hi,j is

defined to be exactly the same as hybrid Hi,j−1 except the response provided to the attacker for the
jth distinct i − bit prefix query of A. Let this prefix be x∗nx

∗
n−1 . . . x

∗
i . Note that in hybrid Hi,j−1

the children of the node x∗nx
∗
n−1 . . . x

∗
i correspond to two pseudorandom values. In hybrid Hi,j we

replace these two children with random values. By careful inspection, it follows that hybrid Hi,qi+1

is actually Hi+1. All we are left to prove is that hybrid Hi,j and Hi,j+1 are indistinguishable for
the appropriate choices of j and we prove this below.

Now we are ready to construct an adversary B that distinguishes U2n from G(Un): On input
T ∈ {0, 1}2n (T could be either from U2n or G(Un)), construct a full binary tree of depth n that
is exactly the same as Hi,j except replacing the children of x∗nx

∗
n−1 . . . x

∗
i by the value T . Observe

that the only difference between Hi,j and Hi,j+1 is that values corresponding to nodes x∗n . . . x
∗
i 0

and x∗n . . . x
∗
i 1 are pseudorandom or random respectively. B uses the value T to generate these two

nodes. Hence success in distinguishing hybrids Hi,j and Hi,j+1 provides a successful attack for B
in violating security of the pseudorandom generator.

1Observe that qi+1 for each appropriate choice of i is bounded by the running time of A. Hence, this value is
bounded by a polynomial in the security parameter.

29

Exercises

Exercise 2.1 Prove or disprove: If f is a one-way function, then the following function B :
{0, 1}∗ → {0, 1} is a hardcore predicate for f . The function B(x) outputs the inner product modulo
2 of the first ⌊|x|/2⌋ bits of x and the last ⌊|x|/2⌋ bits of x.

Exercise 2.2 Let ϕ(n) denote the first n digits of π = 3.141592653589 . . . after the decimal in
binary (π in its binary notation looks like 11.00100100001111110110101010001000100001 . . .).

Prove the following: if one-way functions exist, then there exists a one-way function f such that
the function B : {0, 1}∗ → {0, 1} is not a hard core bit of f . The function B(x) outputs ⟨x, ϕ(|x|)⟩,
where

⟨a, b⟩ :=
n∑

i=1

aibi mod 2

for the bit-representation of a = a1a2 · · · an and b = b1b2 · · · bn.

Exercise 2.3 If f : {0, 1}n × {0, 1}n → {0, 1}n is PRF, then in which of the following cases is
g : {0, 1}n × {0, 1}n → {0, 1}n also a PRF?

1. g(K,x) = f(K, f(K,x))

2. g(K,x) = f(x, f(K,x))

3. g(K,x) = f(K, f(x,K))

Exercise 2.4 (Puncturable PRFs.) Puncturable PRFs are PRFs for which a key can be given
out such that, it allows evaluation of the PRF on all inputs, except for one designated input.

A puncturable pseudo-random function F is given by a triple of efficient algorithms (KeyF ,PunctureF ,
and EvalF), satisfying the following conditions:

- Functionality preserved under puncturing: For every x∗, x ∈ {0, 1}n such that x∗ ̸= x,
we have that:

Pr[EvalF (K,x) = EvalF (Kx∗ , x) : K ← KeyF (1
n),Kx∗ = PunctureF (K,x

∗)] = 1

- Pseudorandom at the punctured point: For every x∗ ∈ {0, 1}n we have that for every
polysize adversary A we have that:

|Pr[A(Kx∗ ,EvalF (K,x
∗)) = 1]− Pr[A(Kx∗ ,EvalF (K,Un)) = 1]| = negl(n)

where K ← KeyF (1
n) and KS = PunctureF (K,x

∗). Un denotes the uniform distribution over
n bits.

Prove that: If one-way functions exist, then there exists a puncturable PRF family that maps n
bits to n bits.

Hint: The GGM tree-based construction of PRFs from a length doubling pseudorandom gener-
ator (discussed in class) can be adapted to construct a puncturable PRF. Also note that K and Kx∗

need not be the same length.

30

Chapter 3

Number Theoretic Background and
Constructions

So far, much of our investigation relied on the existence of one-way-functions or in certain cases on
the existence of one-one one-way functions. However, just the mere existence of an object is not
enough for real-world implementations. In this chapter, we will define certain number theoretic
problems that are conjectured to be hard. We will then be interested in making conjectures about
specific functions being one-way.

3.1 The Discrete-Log Family of Problem

Consider a group G of prime order. For example, consider the group Z∗p where p is a large prime.
Let g be a generator of this group G. In this group, given gx for a random x ∈ {1, . . . p−1} consider
the problem of finding x. This problem, referred to as the discrete-log problem, is believed to be
computationally hard.

As in the case one-way functions, asymptotic definition of the discrete-log problem needs to
consider an infinite family of groups or what we will a group ensemble.

Group Ensemble. A group ensemble is a set of finite cyclic groups G = {Gn}n∈N. For the group
Gn, we assume that given two group elements in Gn, their sum can be computed in polynomial in
n time. Additionally, we assume that given n the generator g of Gn can be computed in polynomial
time.

Definition 3.1 (Discrete-Log Assumption) We say that the discrete-log assumption holds for
the group ensemble G = {Gn}n∈N, if for every non-uniform PPT algorithm A we have that

µA(n) := Pr
x←|Gn|

[A(g, gx) = x]

is a negligible function.

The Diffie-Hellman Problems. In addition to the discrete-log assumption, we also define the
Computational Diffie-Hellman Assumption and the Decisional Diffie-Hellman Assumption.

Definition 3.2 (Computational Diffie-Hellman (CDH) Assumption) We say that the Com-
putational Diffie-Hellman Assumption holds for the group ensemble G = {Gn}n∈N, if for every

31

non-uniform PPT algorithm A we have that

µA(n) := Pr
x,y←|Gn|

[A(g, gx, gy) = gxy]

is a negligible function.

Definition 3.3 (Decisional Diffie-Hellman (DDH) Assumption) We say that the Compu-
tational Diffie-Hellman Assumption holds for the group ensemble G = {Gn}n∈N, if for every non-
uniform PPT algorithm A we have that

µA(n) = | Pr
x,y←|Gn|

[A(g, gx, gy, gxy) = 1]− Pr
x,y,z←|Gn|

[A(g, gx, gy, gz) = 1] |

is a negligible function.

It is not hard to observe that the discrete-log assumption is the weakest of the three assumptions
above. In fact, it is not difficult to show that the Discrete-Log Assumption for G implies the CDH
and the DDH Assumptions for G. Additionally, we leave it as an exercise to show that the CDH
Assumption for G implies the DDH Assumptions for G.

Examples of Groups where these assumptions hold. Now we provide some examples of
group where these assumptions hold.

1. Consider the group Z∗p for a prime p.1 For this group the CDH Assumption is conjectured to
be true. However, using the Legendre symbol,2 the DDH Assumption in this group can be
shown to be false. Can you show how?3

2. Let p = 2q + 1 where both p and q are prime.4 Next, let Q be the order-q subgroup of
quadratic residues in Z∗p. For this group, the DDH assumption is believed to hold.

3. Let N = pq where p, q, p−12 and q−1
2 are primes. Let QRN be the cyclic subgroup of qudratic

resides of order ϕ(N) = (p − 1)(q − 1). For this group QRN , the DDH assumption is also
believed to hold.

1Since the number of primes is infinite we can define an infinite family of such groups. For the sake of simplicity,
here we only consider a single group.

2Let p be an odd prime number. An integer a is said to be a quadratic residue modulo p if it is congruent to a
perfect square modulo p and is said to be a quadratic non-residue modulo p otherwise. The Legendre symbol is a
function of a and p defined as

(
a

p

)
=


1 if a is quadration residue mod p and a ̸≡ 0 mod p

−1 if a is quadration non-residue mod p

0 if a ≡ 0 mod p

Legendre symbol can be efficiently computed as
(

a
p

)
= a

p−1
2 mod p.

3This is because given gx, gy one can easily compute deduce the Legendre symbol of gxy. Observe that if
(

g
p

)
= −1

then we have that
(

gxy

p

)
= 1 if and only if

(
gx

p

)
= 1 or

(
gy

p

)
= 1. Using this fact, we can construct an adversary

that breaks the DDH problem with a non-negligible (in fact, noticeable) probability.
4By Dirichet’s Theorem on primes in arithmetic progression, we have that there are infinite choices of primes (p, q)

for which p = 2q + 1. This allows us to generalize this group to a group ensemble.

32

Is DDH strictly stronger than Discrete-Log? In the example cases above, where DDH is
known believed to be hard, the best known algorithms for DDH are no better than the best known
algorithms for the discrete-log problem. Whether the DDH assumption is strictly stronger than
the discrete-log assumption is an open problem. For the best attacks on “DDH-like” assumptions
see [1].

3.2 CDH in QRN implies Factoring

In this section, we will show that the CDH assumption in QRN implies the factoring assumption.

Lemma 3.1 Given an algorithm A that breaks the CDH assumption in TN , we construct an non-
uniform PPT adversary B that on input N outputs its prime factors p and q.

Proof. Given that A is an algorithm that solves the CDH problem in QRN with a non-negligible
probability, we construct an algorithm B that can factor N . Specifically, B on input N proceeds as
follows:

1. Sample v ← QRN (such a v can be obtained by sampling a random value in Z∗N and squaring
it) and compute g := v2 mod N .

2. Sample x, y ← [N].5

3. Let u := A(g, gx · v, gy · v)6 and compute w := u
gxy ·vx+y .

4. If w2 = v2 mod N and u ̸= ±v, then compute the factors of N as gcd(N, u + v) and
N/gcd(N, u+ v). Otherwise, output ⊥.

Observe that if A solves the CDH problem then the returned values u = g(x+2−1)(y+2−1) =
v2xy+x+y+2−1

. Consequently, the computed value w = v2
−1
. Furthermore, with probability 1

2
we have that w ̸= v. In this case, B can factor N .

3.3 OWFs from Discrete-Log

Let’s suppose that the discrete-log assumption hold for group ensemble G = {Gn} then we have that
the function family {fn} where fn : {1, . . . |Gn|} → Gn is a one-way function family. In particular,
fn(x) = gx where g is the generator of the group Gn. The proof that {fn} is one-way is left as as
an exercise.

3.4 PRFs from DDH: Naor-Reingold PRF

We will now describe a PRF function family Fn : K × {0, 1}n → Gn where DDH is assumed to be
hard for {Gn} and K is the key space. The seed for the PRF Fn will be K = (h, u1, . . . un), where
u, u0 . . . un are sampled uniformly from |Gn|, g is the generator of Gn and h = gu.

Fn(K,x) = h
∏

i u
xi
i

5Note that sampling x, y uniformly from [N] is statistically close to sampling x, y uniformly from [ϕ(N)].
6Note that gx · v where x← [N] is statistically close to gx where x← [N].

33

Next, we will prove that the function Fn is a pseudo-random function or that {Fn} is a pseudo-
random function ensemble.7

Lemma 3.2 Assuming the DDH problem for {Gn} is hard, we have that {Fn} is a pseudorandom
function ensemble.

Proof. The proof of this lemma is similar to the proof of Theorem 2.5.
Let Rj

n be random function from {0, 1}j → Gn. Then we want to prove that for all non-uniform
PPT adversaries A we have that:

µ(n) =
∣∣Pr[AFn(1n) = 1]− Pr[ARn

n(1n) = 1]
∣∣

is a negligible function.
For the sake of contradiction, we assume that the function Fn is not pseudorandom. Next,

towards a contradiction, we consider a sequence of hybrid functions F 0
n . . . F

n
n . For any j ∈ {0, . . . n},

let F j
n((h, uj . . . un), x) = (Rj

n(x1 . . . xj))
∏n

i=j+1 u
xi
i , where R0

n(ϵ) is the constant function with output
h. Observe that F 0

n is the same as the function Fn and Fn
n is the same as the function Rn

n. Thus,
by a hybrid argument, we conclude that there exists k ∈ {0, . . . n− 1}, such that∣∣∣Pr[AFk

n (1n) = 1]− Pr[AFk+1
n (1n) = 1]

∣∣∣
is a non-negligible function. Now all we are left to show is that this implies an attacker that refutes
the DDH assumption. The proof of this claim follows by a sequence of T sub-hybrids, where T is
the running time of A. Without loss of generality we assume that A never makes the same query
twice.

More specifically, we consider a sequence of functions F k,t
n where t ∈ {0, T}, F k,0

n is same as F k
n

and F k,T
n is same as F k+1

n . In particular, we explain how F k,t
n answers queries by A.8 Let x1, . . . xt

be the first t queries made by A. For any query, x made by A such that the first k bits of x match
the first k bits of one of x1, . . . xy answer as F k+1

n else answer as F k
n . Now we can conclude that

there exists a t such that F k,t
n and F k,t+1

n are distinguishable with non-negligible probability.
Finally, we will show that using an adversary that can distinguish between F k,t

n and F k,t+1
n we

need to construct an adversary B that refutes the DDH assumption. We leave construction of this
adversary as an exercise.

7Here, we require that adversary distinguish the function Fn from a random function from {0, 1}n to Gn. Note
that the output range of the function is Gn. Note that the distribution of random group elements in Gn might
actually be far from uniformly random strings.

8As assumed earlier, keep in mind that A never makes the same query twice.

34

Chapter 4

Digital Signatures

In this chapter, we will introduce the notion of a digital signature. At an intuitive level, a digital
signature scheme helps providing authenticity of messages and ensuring non-repudiation. We will
first define this primitive and then construct what is called as one-time secure digital signature
scheme. An one-time digital signature satisfies a weaker security property when compared to
digital signatures. We then introduce the concept of collision-resistant hash functions and then
use this along with a one-time secure digital signature to give a construction of digital signature
scheme.

4.1 Definition

A digital signature scheme is a tuple of three algorithms (Gen, Sign,Verify) with the following syntax:

1. Gen(1n)→ (vk, sk): On input the message length (in unary) 1n, Gen outputs a secret signing
key sk and a public verification key vk.

2. Sign(sk,m)→ σ: On input a secret key sk and a message m of length n, the Sign algorithm
outputs a signature σ.

3. Verify(vk,m, σ) → {0, 1}: On input the verification key vk, a message m and a signature σ,
the Verify algorithm outputs either 0 or 1.

We require that the digital signature to satisfy the following correctness and security properties.
Correctness. For the correctness of the scheme, we have that ∀m ∈ {0, 1}n,

Pr [(vk, sk)← Gen(1n), σ ← Sign(sk,m) : Verify(vk,m, σ) = 1] = 1.

Security. Consider the following game between an adversary and a challenger .

1. The challenger first samples (vk, sk)← Gen(1n). The challenger gives vk to the adversary.

2. Signing Oracle. The adversary is now given access to a signing oracle. When the adversary
gives a query m to the oracle, it gets back σ ← Sign(sk,m).

3. Forgery. The adversary outputs a message, signature pair (m∗, σ∗) where m∗ is different
from the queries that adversary has made to the signing oracle.

4. The adversary wins the game if Verify(vk,m∗, σ∗) = 1.

We say that the digital signature scheme is secure if the probability that the adversary wins the
game is negl(n).

35

4.2 One-time Digital Signature

An one-time digital signature has the same syntax and correctness requirement as that of a digital
signature scheme except that in the security game the adversary is allowed to call the signing oracle
only once (hence the name one-time). We will now give a construction of one-time signature scheme
from the assumption that one-way functions exists.

Let f : {0, 1}n → {0, 1}n be a one-way function.

• Gen(1n): On input the message length (in unary) 1n, Gen does the following:

1. Chooses xi,b ← {0, 1}n for each i ∈ [n] and b ∈ {0, 1}.

2. Output vk =

[
f(x1,0) . . . f(xn,0)
f(x1,1) . . . f(xn,1)

]
and sk =

[
x1,0 . . . xn,0
x1,1 . . . xn,1

]
• Sign(sk,m): On input a secret key sk and a message m ∈ {0, 1}n, the Sign algorithm outputs
a signature σ = x1,m1∥x2,m2∥ . . . ∥xn,mn .

• Verify(vk,m, σ): On input the verification key vk, a message m and a signature σ, the Verify
algorithm does the following:

1. Parse σ = x1,m1∥x2,m2∥ . . . ∥xn,mn .

2. Compute vk′i,mi
= f(xi,mi) for each i ∈ [n].

3. Check if for each i ∈ [n], vk′i,mi
= vki,mi . If all the checks pass, output 1. Else, output

0.

Before we prove any security property, we first observe that this scheme is completely broken if
we allow the adversary to ask for two signatures. This is because the adversary can query for the
signatures on 0n and 1n respectively and the adversary gets the entire secret key. The adversary
can then use this secret key to sign on any message and break the security.

We will now argue the one-time security of this construction. Let A be an adversary who breaks
the security of our one-time digital signature scheme with non-negligible probability µ(n). We will
now construct an adversary B that breaks the one-wayness of f . B receives a one-way function
challenge y and does the following:

1. B chooses i∗ uniformly at random from [n] and b∗ uniformly at random from {0, 1}.

2. It sets vki∗,b∗ = y

3. For all i ∈ [n] and b ∈ {0, 1} such that (i, b) ̸= (i∗, b∗), B samples xi,b ← {0, 1}n. It computes
vki,b = f(xi,b).

4. It sets vk =

[
vk1,0 . . . vkn,0
vk1,1 . . . vkn,1

]
and sends vk to A.

5. A now asks for a signing query on a message m. If mi∗ = b∗ then B aborts and outputs a
special symbol abort1. Otherwise, it uses it knowledge of xi,b for (i, b) ̸= (i∗, b∗) to output a
signature on m.

6. A outputs a valid forgery (m∗, σ∗). If m∗i∗ = mi∗ then B aborts and outputs a special symbol
abort2. If it does not abort, then it parses σ∗ as 1,m1∥x2,m2∥ . . . ∥xn,mn and outputs xi∗,b∗ as
the inverse of y.

36

We first note that conditioned on B not outputting abort1 or abort2, the probability that B outputs
a valid preimage of y is µ(n). Now, probability B does not output abort1 or abort2 is 1/2n (this is
because abort1 is not output with probability 1/2 and conditioned on not outputting abort1, abort2
is not output with probability 1/n). Thus, B outputs a valid preimage with probability µ(n)/2n.
This completes the proof of security.

We now try to extend this one-time signature scheme to digital signatures. For this purpose,
we will rely on a primitive called as collision-resistant hash functions.

4.3 Collision Resistant Hash Functions

As the name suggests, collision resistant hash function family is a set of hash functions H such that
for a function h chosen randomly from the family, it is computationally hard to find two different
inputs x, x′ such that h(x) = h(x′). We now give a formal definition.

4.3.1 Definition of a family of CRHF

A set of function ensembles
{Hn = {hi : Dn → Rn}i∈In}n

where |Dn| < |Rn| is a family of collision resistant hash function ensemble if there exists efficient
algorithms (Sampler,Eval) with the following syntax:

1. Sampler(1n)→ i : On input 1n, Sampler outputs an index i ∈ In.

2. Eval(i, x) = hi(x) : On input i and x ∈ Dn, Eval algorithm outputs hi(x).

3. ∀ PPT A we have

Pr[i← Sampler(1n), (x, x′)← A(1n, i) : hi(x) = hi(x
′) ∧ x ̸= x′] ≤ negl(n)

4.3.2 Collison Resistant Hash functions from Discrete Log

We will now give a construction of collision resistant hash functions from the discrete log assump-
tion. We first recall the discrete log assumption:

Definition 4.1 (Discrete-Log Assumption) We say that the discrete-log assumption holds for
the group ensemble G = {Gn}n∈N, if for every non-uniform PPT algorithm A we have that

µA(n) := Pr
x←|Gn|

[A(g, gx) = x]

is a negligible function.

We now give a construction of collision resistant hash functions.

• Sampler(1n) : On input 1n, the sampler does the following:

1. It chooses x← |Gn|.
2. It computes h = gx.

3. It outputs (g, h).

• Eval((g, h), (r, s)) : On input (g, h) and two elements (r, s) ∈ |Gn|, Eval outputs grhs.

37

We now argue that this construction is collision resistant. Assume for the sake of contradiction
that an adversary gives a collision (r1, s1) ̸= (r2, s2). We will now use this to compute the discrete
logarithm of h. We first observe that:

r1 + xs1 = r2 + xs2

(r1 − r2) = x(s2 − s1)

We infer that s2 ̸= s1. Otherwise, we get that r1 = r2 and hence, (r1, s1) = (r2, s2). Thus, we can
compute x = r1−r2

s1−s2 and hence the discrete logarithm of h is computable.

4.4 Multiple-Message Digital Signature

We now explain how to combine collision-resistant hash functions and one-time signatures to get a
signature scheme for multiple messages. We first construct an intermediate primitive wherein we
will still have the same security property as that of one-time signature but we would be able to
sign messages longer than the length of the public-key.1

4.4.1 One-time Signature Scheme for Long Messages

We first observe that the CRHF family H that we constructed earlier compresses 2n bits to n bits
(also called as 2-1 CRHF). We will now give an extension that compresses an arbitrary long string
to n bits using a 2-1 CRHF.

Merkle-Damgard CRHF. The sampler for this CRHF is same as that of 2-1 CRHF. Let h be
the sampled hash function. To hash a string x, we do the following. Let x be a string of length m
where m is an arbitrary polynomial in n. We will assume that m = kn (for some k) or otherwise,
we can pad x to this length. We will partition the string x into k blocks of length n each. For
simplicity, we will assume that k is a perfect power of 2 or we will again pad x appropriately. We will
view these k-blocks as the leaves of a complete binary tree of depth ℓ = log2 k. Each intermediate
node is associated with a bit string y of length at most ℓ and the root is associated with the empty
string. We will assign a tag ∈ {0, 1}n to each node in the tree. The i-th leaf is assigned tagi equal
to the i-block of the string x. Each intermediate node y is assigned a tagy = h(tagy∥0∥tagy∥1). The
output of the hash function is set to be the tag value of the root. Notice that if there is a collision
for this CRHF then there are exists one intermediate node y such that for two different values
tagy∥0, tagy∥1 and tag′y∥0, tag

′
y∥1 we have, h(tagy∥0, tagy∥1) = tag′y∥0, tag

′
y∥1. This implies that there

is a collision for h.

Construction. We will now use the Merkle-Damgard CRHF and the one-time signature scheme
that we constructed earlier to get a one-time signature scheme for signing longer messages. The
main idea is simple: we will sample a (sk, vk) for signing n-bit messages and to sign a longer
message, we will first hash it using the Merkle-Damgard hash function to n-bits and then sign on
the hash value. The security of the construction follows directly from the security of the one-time
signature scheme since the CRHF is collision-resistant.

1Note that in the one-time signature scheme that we constructed earlier, the length of message that can be signed
is same as the length of the public-key.

38

4.4.2 Signature Scheme for Multiple Messages

We will now describe the construction of signature scheme for multiple messages. Let (Gen′, Sign′,Verify′)
be a one-time signature scheme for signing longer messages.

1. Gen(1n) : Run Gen′(1n) using to obtain sk, vk. Sample a PRF key K. The signing key is
(sk,K) and the verification key is vk.

2. Sign((sk,K),m) : To sign a message m, do the following:

(a) Parse m as m1m2 . . .mℓ where each mi ∈ {0, 1}.
(b) Set sk0 = sk and m0 = ϵ (where ϵ is the empty string).

(c) For each i ∈ [ℓ] do:

i. Evaluate PRF(m1∥ . . . ∥mi−1∥0) and PRF(m1∥ . . . ∥mi−1∥1) to obtain r0 and r1 re-
spectively. Run Gen′(1n) using r0 and r1 as the randomness to obtain (ski,0, vki,1)
and (ski,1, vki,1).

ii. Set σi = Sign(ski−1,mi−1 , vki,0∥vki,1)
iii. If i = ℓ, then set σℓ+1 = Sign(ski,mi ,m).

(d) Output σ = (σ1, . . . , σℓ+1) along with all the verification keys as the signature.

3. Verify(vk, σ,m): Check if all the signatures in σ are valid.

To prove security, we will first use the security of the PRF to replace the outputs with random
strings. We will then use the security of the one-time signature scheme to argue that the adversary
cannot mount an existential forgery.

Exercises

Exercise 4.1 Digital signature schemes can be made deterministic. Given a digital sig-
nature scheme (Gen,Sign,Verify) for which Sign is probabilistic, provide a construction of a digital
signature scheme (Gen′,Sign′,Verify′) where Sign′ is deterministic.

39

40

Chapter 5

Public Key Encryption

Public key encryption deals with a setting where there are two parties who wish to communicate
a secret message from one of them to the other. Unlike the symmetric setting, in which the two
parties share a secret key, the public-key setting has asymmetry in who can decrypt a given message.
This allows one party to announce the public key to everyone so messages can be encrypted, but
keep the secret key private so no one else can preform decryption.

Definition 5.1 (Public Key Encryption) A public key crypto-system consists of three algo-
rithms: Gen, Enc, and Dec with properties as follows:

1. Gen(1k) outputs a pair of keys (pk, sk); the public and private keys respectively.

2. Enc(pk,m) encrypts a message m under public key pk.

3. Dec(sk, c) decrypts a ciphertext c under secret key sk.

There are other properties about these algorithms which we will discuss next in order for these
algorithms to be useful. The first of these, correctness, ensures that the decryption of an encrypted
message returns the original plaintext. The second is the security property, which says that an
attacker with access to the encrypted message learns nothing about the plaintext.

Note that the Gen algorithm must be a randomized algorithm. If not, it would always output
the same public-private key pair, and would not be very useful. We will later show that Enc must
also be a randomized algorithm, or else the security properties will not hold. Finally, Dec may be
a randomized algorithm but is not required to be one.

5.1 Correctness

In order for the encryption and decryption to satisfy our intuition of what these algorithms should
do, we require that decrypting an encrypted value with the correct keys yields the original message.

Definition 5.2 (Correctness) An public key algorithm (Gen,Enc,Dec) is correct if

∀m.Pr[Dec(sk,Enc(pk,m)) = m|(pk, sk)← Gen(1k)] = 1

Some definitions may relax this constraint from being equal to one to being greater than 1 −
neg(·). However, since this probability is equal to one, we can restate the definition

41

Lemma 5.1 (Correctness) An public key algorithm (Gen,Enc,Dec) is correct if

∀m, pk, sk.(pk, sk)← Gen(1k) =⇒ Dec(sk,Enc(pk,m)) = m.

There is no statement involved about what happens when encrypting or decrypting under the
wrong key, nor is there anything about decrypting a malformed ciphertext. It only requires that
decryption of an encrypted message under corresponding keys produces the original message.

5.2 Indistinguishability and Semantic Security

Not only must public key encryption be correct, we would also like it to hide the values which are
encrypted. There are two different definitions which we will show are identical.

5.2.1 Indistinguishability Security

Our first definition, indistinguishability, states that the ciphertexts obtained from encrypting any
message must look identical to those from encrypting any other message. In particular this implies
that encryption must be a randomized algorithm.

Definition 5.3 (Indistinguishability) A public key encryption scheme satisfies the indistin-
guishability property if the distributions Am1 and Am2 are computationally indistinguishable for
all m1,m2 ∈M such that |m1| = |m2| where

Am1 = {pk,Enc(pk,m1) : (pk, sk)← Gen(1k)}k
Am2 = {pk,Enc(pk,m2) : (pk, sk)← Gen(1k)}k

It is required that we talk about computational indistinguishability. The encryption of a message
must reveal at least something in an information-theoretic setting. It is also required that the sizes
of the two messages be equal. It would be very easy to tell the difference between the encryption
of a one-bit message and an arbitrarily large message by just comparing their sizes. It is possible
to work around this requirement by having an encryption scheme pad messages so that they are
all of equal size if an upper bound is known.

5.2.2 Semantic Security

An alternate definition, which we will later prove is identical, is semantic security. This definition
intuitively states that given a ciphertext, you should learn nothing about the original message other
than it’s length.

Definition 5.4 (Semantic Security) An encryption scheme is semantically secure if there ex-
ists a simulator S such that the two following processes generate computationally indistinguishable
outputs.

1. (m, z)←M(1k)
2. (pk, sk)← Gen(1k)
3. OutputA(pk,Enc(pk,m), z)

≈
1. (m, z)←M(1k)
2. OutputSA(1k, z)

Where M is a machine that randomly samples message from the message space and arbitrary
additional information and A is the adversary.

42

5.2.3 Equivalence of Definitions

Theorem 5.1 (Equivalence of Definitions) A public key encryption scheme (gen, enc, dec) is
semantically secure if and only if it satisfies the indistinguishability property.

Proof. We begin by proving that semantic security implies indistinguishability. That is, we need
to show that for every PPT adversary A, Am1 and Am2 are computationally indistinguishable for
every pair of m1,m2 ∈M . We prove by a hybrid argument. In hybrid H0 let M always output the
value m1, feed into A and output A(pk,Enc(pk,m1)). In hybrid H1 replace the output by SA(1k).
In hybrid H2 let M always output the value m2, feed into A and output A(pk,Enc(pk,m2)). By
semantic security the output of these hybrids are computationally indistinguishable, hence A cannot
distinguish Am1 and Am2 .

Now we prove the other direction. The simulator generates a public/secret key pair (pk, sk)←
Gen(1k), encrypts the message 0|m| and feeds into A. It outputs A(pk,Enc(pk, 0|m|), z). By the
indistinguishability property, A cannot distinguish (pk,Enc(pk, 0|m|)) from (pk,Enc(pk,m)), hence
the outputs of A and S are computationally indistinguishable.

5.3 Public Key Encryption from Trap-Door OWP

We now show how it is possible to create a public key encryption scheme from a trapdoor one way
permutation.

Theorem 5.2 Let (G,F,A) be a trap-door one-way permutation The following is then a public-key
encryption scheme:

1. Gen(1k) = (i, ti)← G(1k).

2. Enc(pk,m) = (Fi(x)||r,B(x, r)⊕m) where (x, r) are sampled uniformly, and B(·) is a hard-
core bit.

3. Dec(sk, c) = B(A(i, ti, y), r)⊕ c0 where c = (y||r, c0).

Proof. Clearly the encryption scheme is correct, since α⊕ α⊕m = m for any α.
Now we prove that the scheme is indistinguishable by showing that Enc(pk, 0) and Enc(pk, 1) are

computationally indistinguishable. Note that distinguishing the two distributions is by definition
equivalent to guessing the hard-core bit. Hence they are indistinguishable.

5.4 Indistinguishability in a Chosen Plaintext Attack

We now define a new security requirement, IND-CPA, which is stronger than indistinguishability
or semantic security. Consider the following scheme:

The challenger samples (pk, sk) ← Gen(1k) and gives pk to the attacker. The attacker then
replis with two messages (m0,m1). The challenger then picks one of these uniformly at random,
encrypts it generating c = Enc(pk,mb) and sends it to the attacker. The attacker must then guess
which message was encrypted.

Here, the attacker gets to choose two messages which he likes, ask the challenger to encrypt the
two messages, and only must be able to distinguish between the two.

Then a scheme is IND-CPA if ∀A.Pr[ExperimentA(1k)] < 1/2 + neg(k) where A is a PPT
machine. That is, an attacker which can ask the user to encrypt specific messages after learning the

43

public keys can still not learn anything about the values of the encrypted messages. In particular,
there can not be any easy-to-identify weak messages for a given public key.

Definition 5.5 A public key encryption scheme (PKE) given by the three efficient procedures
(G,E,D) is IND-CPA-secure if no adversary A has a significant advantage in the game repre-
sented in Table 5.1.

Challenger Adversary

(pk, sk)← G(1k)
pk−−−−−−−−−−−−−−→

m′0,m
′
1←−−−−−−−−−−−−−−

b
$←− {0, 1}

c∗ = E(pk,m′b)
c∗−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−

Output 1 if (b′ = b)

Table 5.1: CPA security.

This means that every probabilistic polynomial-time (PPT) adversary A has only a negligible
advantage (over a random guess) when guessing which message (m′0 or m′1) the challenger used to
obtain c∗.

Note that, since the adversary has the public key pk, he is able to encrypt any polynomial number
of plaintexts during the game.

Theorem 5.3 IND-CPA is a stronger definition than semantic security.

Proof. First, observe that IND-CPA is at least as strong as semantic security. An attack which
showed an encryption scheme is not semantically secure can be used identically to distinguish the
two messages the attacker sends in the IND-CPA protocol.

Now we only need to show that it is stronger. In the following we construct an encryption
scheme which is semantically secure, but is not secure under IND-CPA. Assume we have a scheme
(G,E,D) which is semantically secure. Now we will construct a new one (G′, E′, D′) which is still
semantically secure, but is definitely not IND-CPA.

G′(1k) = ((pk, x0, x1), sk), where (pk, sk)← G(1k), x0, x1 ←M(1k)

E′((pk, x0, x1),m) = if m ̸∈ {x0, x1}, then (y, E(pk,m)) else (n,m)

D′(sk, c) = if c starts with y, thenD(sk, E(pk,m)) elsem

This scheme is still semantically secure. E′ is different from E on only two inputs, which is
certainly negligible in k. However, this scheme is not IND-CPA. After seeing the public key pair
(pk, x0, x1), the attacker knows exactly to pick values x0 and x1 will be able to distinguish between
those two with probability 1.

5.5 Chosen Ciphertext Attack for Public Key Encryption

Definition 5.6 A public key encryption scheme (PKE) given by the three efficient procedures
(G,E,D) is IND-CCA1-secure if no adversary A has a significant advantage in the game rep-
resented in Table 5.2.

44

Challenger Adversary

(pk, sk)← G(1k)
pk−−−−−−−−−−−−−−→
c1←−−−−−−−−−−−−−−

m1 = D(sk, c1)
m1−−−−−−−−−−−−−−→
...
cq←−−−−−−−−−−−−−−

mq = D(sk, cq)
mq−−−−−−−−−−−−−−→

m′0,m
′
1←−−−−−−−−−−−−−−

b
$←− {0, 1}

c∗ = E(pk,m′b)
c∗−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−

Output 1 if (b′ = b)

Table 5.2: Non-adaptive CCA security.

In this definition the adversary may send some polynomial number of queries to be decrypted
before he receives the challenge ciphertext c∗.

Definition 5.7 A public key encryption scheme (PKE) given by the three efficient procedures
(G,E,D) is IND-CCA2-secure if no adversary A has a significant advantage in the game rep-
resented in Table 5.3.

Note that, in this adaptive version, the adversary is able to send more queries to the challenger
even after having seen the challenge ciphertext c∗. The only thing we require is that he does not
pass the challenge ciphertext c∗ itself for those queries.

Theorem 5.4 Given an IND-CPA-secure public key encryption scheme (G,E,D), it is possible to
construct an IND-CCA1-secure public key encryption scheme (G′, E′, D′).

Proof. Let (pk1, sk1)← G(1k), (pk2, sk2)← G(1k) be two pairs of keys generated by the IND-CPA
scheme (G,E,D). We claim that there is a NIZK proof system that is able to prove that c1 and
c2 are ciphertexts obtained by the encryption of the same message m under the keys pk1 and pk2,
respectively.

More precisely, we claim that there is a NIZK proof system for the language

L = {(c1, c2) | ∃r1, r2,m such that c1 = E(pk1,m; r1) and c2 = E(pk2,m; r2)},

where E(pki,m; ri) represents the output of E(pki,m) when the random coin flips of the procedure
E are given by ri.

The language L is clearly inNP , since for every x = (c1, c2) ∈ L there is a witness w = (r1, r2,m)
that proves that x ∈ L. Given x and w, there is an efficient procedure to verify if w is a witness to
the fact that x ∈ L.

By Theorem ??, there is a NIZK proof system for any language in NP , so our claim holds.
Let this NIZK proof system be given by the procedures (K,P, V). We can assume that this is an
adaptive NIZK, because it is always possible to construct an adaptive NIZK from a non-adaptive
NIZK proof system. Then we define our public key encryption scheme (G′, E′, D′) as follows:

45

Challenger Adversary

(pk, sk) = G(1k)
pk−−−−−−−−−−−−−−→
c1←−−−−−−−−−−−−−−

m1 = D(sk, c1)
m1−−−−−−−−−−−−−−→
...
cq←−−−−−−−−−−−−−−

mq = D(sk, cq)
mq−−−−−−−−−−−−−−→

m′0,m
′
1←−−−−−−−−−−−−−−

b
$←− {0, 1}

c∗ = E(pk,m′b)
c∗−−−−−−−−−−−−−−→
cq+1←−−−−−−−−−−−−−− cq+1 ̸= c∗

mq+1 = D(sk, cq+1)
mq+1−−−−−−−−−−−−−−→
...
cq+l←−−−−−−−−−−−−−− cq+l ̸= c∗

mq+l = D(sk, cq+l)
mq+l−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−

Output 1 if (b′ = b)

Table 5.3: Adaptive CCA security.

G′(1k) : (pk1, sk1)← G(1k)

(pk2, sk2)← G(1k)

σ ← K(1k)

let pk′ = (pk1, pk2, σ) and sk′ = sk1

return (pk′, sk′)

E′(pk′,m) : let (pk1, pk2, σ) = pk′

c1 ← E(pk1,m; r1)

c2 ← E(pk2,m; r2)

let x = (c1, c2) // statement to prove

let w = (r1, r2,m) // witness for the statement

π ← P (σ, x, w)

let c = (c1, c2, π)

return c

D′(pk′, c) : let sk1 = sk′

let (c1, c2, π) = c

let x = (c1, c2)

if V (σ, x, π)

then return D(sk1, c1)

else return ⊥

46

Game 0 Game 1

(pk1, sk1), (pk2, sk2)← G(1k) (pk1, sk1), (pk2, sk2)← G(1k)
σ ← K(1k) σ ← Sim(1k)
let pk′ = (pk1, pk2, σ) and sk′ = sk1 let pk′ = (pk1, pk2, σ) and sk′ = sk1
(m0,m1)← AD′(sk′,·)(pk′) (m0,m1)← AD′(sk′,·)(pk′)
c1 ← E(pk1,m0; r1), c2 ← E(pk2,m0; r2) c1 ← E(pk1,m0; r1), c2 ← E(pk2,m0; r2)
π ← P (σ, (c1, c2), (r1, r2,m0)) π ← Sim(c1, c2)
b← A(pk′, c1, c2, π) b← A(pk′, c1, c2, π)

Game 2 Game 2’

(pk1, sk1), (pk2, sk2)← G(1k) (pk1, sk1), (pk2, sk2)← G(1k)
σ ← Sim(1k) σ ← Sim(1k)
let pk′ = (pk1, pk2, σ) and sk′ = sk1 let pk′ = (pk1, pk2, σ) and sk′ = sk2
(m0,m1)← AD′(sk′,·)(pk′) (m0,m1)← AD′(sk′,·)(pk′)
c1 ← E(pk1,m0; r1), c2 ← E(pk2,m1; r2) c1 ← E(pk1,m0; r1), c2 ← E(pk2,m1; r2)
π ← Sim(c1, c2) π ← Sim(c1, c2)
b← A(pk′, c1, c2, π) b← A(pk′, c1, c2, π)

Game 3 Game 3’

(pk1, sk1), (pk2, sk2)← G(1k) (pk1, sk1), (pk2, sk2)← G(1k)
σ ← Sim(1k) σ ← Sim(1k)
let pk′ = (pk1, pk2, σ) and sk′ = sk2 let pk′ = (pk1, pk2, σ) and sk′ = sk1
(m0,m1)← AD′(sk′,·)(pk′) (m0,m1)← AD′(sk′,·)(pk′)
c1 ← E(pk1,m1; r1), c2 ← E(pk2,m1; r2) c1 ← E(pk1,m1; r1), c2 ← E(pk2,m1; r2)
π ← Sim(c1, c2) π ← Sim(c1, c2)
b← A(pk′, c1, c2, π) b← A(pk′, c1, c2, π)

Game 4

(pk1, sk1), (pk2, sk2)← G(1k)
σ ← K(1k)
let pk′ = (pk1, pk2, σ) and sk′ = sk1
(m0,m1)← AD′(sk′,·)(pk′)
c1 ← E(pk1,m1; r1), c2 ← E(pk2,m1; r2)
π ← P (σ, (c1, c2), (r1, r2,m1))
b← A(pk′, c1, c2, π)

Table 5.4: Games used for the hybrid argument.

The correctness of (G′, E′, D′) is easy. If the keys were generated correctly and the messages
were encrypted correctly, then π is a valid proof for the fact that c1 and c2 encrypt the same
message. So the verifier V (σ, x, π) will output true and the original message m will be obtained by
the decryption D(sk1, c1).

Now we want to prove that (G′, E′, D′) is IND-CCA1-secure. Let Sim be a simulator of the
NIZK proof system. Consider the games shown in Table 5.4. In these games, the adversary is
given a decrypting oracle during the first phase and at the end the adversary should output a bit
to distinguish which game he is playing. We now show that the adversary A cannot distinguish

47

Game 0 and Game 4.

Let FAKE be the event that A submits a query (c1, c2, π) for its decryption oracle such that
D(sk1, c1) ̸= D(sk2, c2) but V (σ, (c1, c2), π) = 1. This represents the event where the adversary is
able to trick the verifier into returning true on a bad pair of ciphertexts (i.e., a pair not in the
language). The probability of event FAKE in Game 0 is negligible because of the soundness of the
proof system.

Game 1 differs from Game 0 by the use of a simulator for the random string and proof genera-
tion. They are indistinguishable by reduction to the zero-knowledge property of the proof system.
In particular, if the adversary could detect the difference, then the adversary could be used to
distinguish real proofs from simulated proofs. And the probability of event FAKE in Game 1 is also
negligible by the zero-knowledge property.

Game 2 differs from Game 1 in that it obtains ciphertext c2 from the message m1. They are
indistinguishable by reduction to the IND-CPA property of the underlying PKE, which guarantees
that encryptions of m0 cannot be distinguished from encryptions of m1. Pr[FAKE] is the same as
in Game 1, namely negligible.

Game 2’ differs from Game 2 by using the key sk2 for decryption instead of sk1. The adver-
sary’s view of the two games only differs if the event FAKE occurs, and it happens with negligible
probability.

Game 3 differs from Game 2’ in that it obtains ciphertext c1 from the message m1. They are
indistinguishable by reduction to the IND-CPA property of the underlying PKE, which guarantees
that encryptions of m0 cannot be distinguished from encryptions of m1. Pr[FAKE] stays the same,
namely negligible.

Game 3’ differs from Game 3 by using the key sk1 for decryption instead of sk2. The adver-
sary’s view of the two games only differs if the event FAKE occurs, and it happens with negligible
probability.

Game 4 differs from Game 3’ by the use of the real NIZK proof system instead of a simulator.
They are indistinguishable by reduction to the zero-knowledge property of the proof system.

5.6 One Time Secure Signature Scheme

Model The scheme consists of the three efficient algorithms (Setup, Sign, Verify). Setup creates
verification and signing keys. Verifyreturns 1 if the signature verifies. The scheme is named one
time secure as the attacker is only allowed one query before they must produce a valid message
and signature pair. The verification and signing keys are created with the message, the recipient
does not know the verification key until they receive it with the message.

(V k, Sk)
$←−Setup(1k)

α←Sign(Sk,m)

{1, 0} ←Verify(V k,m, α)

Correctness With honest Setup and Sign, Pr[Verify(V k,m, Sign(Sk,m)) = 1] = 1.

Security We base security on the following experiment between a challenger and a PPT adversary.

48

Challenger Adversary

(V k, Sk) = Setup(1k)
V k−→

m←−
α = Sign(m)

α−→
m′, α′
←−−−

Output 1 if
Verify(V k,m′, α′) = 1
and (m,α) ̸= (m′, α′)
0 otherwise

We require that an adversary can not forge a signature for a different message.

Pr[Output = 1] = neg(k).

5.7 CCA2

We now use the one-time signature system (Setups, Signs,Verifys), a CCA1 secure scheme (Gen1,
Enc1, Dec1), and an adaptively secure NIZK proof system (P, V) to create a CCA2 secure scheme
(Setup, Enc, Dec) using the Dolev-Dwork-Naor (DDN) scheme [?].

5.7.1 Model

Setup Setup(1k) creates 2k public keys, random bits σ, and 2k private keys.

(Pk, Sk)← Setup(1k) where

(Pki,b, Ski,b)← Gen1(1
k) ∀i ∈ [k], b ∈ {0, 1}

σ ← {0, 1}poly(k)

Pk =

([
Pk1,0 Pk2,0 Pk3,0 · · · Pkk,0
Pk1,1 Pk2,1 Pk3,1 · · · Pkk,1

]
, σ

)
, Sk =

[
Sk1,0
Sk1,1

]
.

Enc Enc(Pk,m) uses our one-time signature and CCA1 schemes to encrypt the message k times.

1. Generate verification and signing keys

(V k, Sk)← Setups(1
k).

2. Select one key from each of the k columns of Pk based on the bits of V k

V k = V k1|V k2|V k3| · · · |V kk[
Pk1,V k1 Pk2,,V k2 Pk3,,V k3 · · · Pkk,,V kk

]
.

3. Use the k keys and a witness for each key to create k CCA1 encryptions of m

wi ← {0, 1}∗

Ci ← Enc1(Pki,V ki ,m;wi).

49

4. Sign the collection of k encryptions Ci along with a proof, π, that each Ci encrypts the same
message under the corresponding Pki,V ki public key

π ←P(σ,C1, · · · , Ck,m,w)

α←Signs(Sk,C1, · · · , Ck, π).

5. Output

C = (V k,C1, · · · , Ck, π, α).

Dec If the signature and proof verify, decrypt C1 using Sk1,V k1

Dec(V k,C1, · · · , Ck, π, α) =⊥ if Verifys(V k, (C1, · · · , Ck, π), α) = 0, else

⊥ if V(σ,C1, · · · , Cn, π) = 0, else

Dec1(Sk1,V k1 , C1).

5.7.2 Security

The proof is similar to that for CCA1. We start with encrypting m0, simulate the proof, change all
the C∗i from m0 to m1, then return to the honest proof. All while still answering before and after
decryption oracle queries. We use the experiment in Table 5.5. For the proof we define two events
that might occur.

Table 5.5: CCA2 Indistinguishability Experiment

Phase Challenger Adversary ADecSk(·),EncPk(·)

Setup (Pk, Sk)← Setup(1k) Pk−→

Oracle Phase 1 Ci←− i ∈ [2, q]

mi = Dec(Sk,Ci) mi−→

Challenge m0,m1←−−−−
← ADecSk(·)(Pk)

b
$←− {0, 1}

C∗ = Enc(Pk,mb) C∗−→

Oracle Phase 2 Ci←− i ∈ [q + 1, n]

mi = Dec(Sk,Ci) mi−→

Response b′←−← ADecSk(·)(Pk,C∗)

Output 1 if b = b′,
0 otherwise.

50

Forge Event Forge concerns the signature and is defined as the adversary submitting a decryption
query di that uses our V k and Verify(di) = 1, but is different from the cipher text we sent.

∃i ∈ [q′] : di =(V k′i, C
′
1,i, · · · , C ′k,i, π′i, α′i) ̸= C∗

were V k′i = V k

Verify(di) = 1.

Fake Event Fake concerns the proof and is defined as the adversary submitting a decryption
query di : V(di) = 1 but two of its cipher texts decrypt to different messages.

∃i ∈ [q′] : di =(V ki, C1,i, · · · , Ck,i, πi, αi)

where V(σ,C1,i, · · · , Ck,i, πi) = 1

but ∃j, l ∈ [k] : Dec(SkV ki,j , Cj,i) ̸= Dec(SkV ki,l , Cl,i)

We want to move from

C∗ = (V k∗, C∗1 , · · · , C∗k , π∗, α∗)

encrypting m0 to encrypting m1 in a manner undetectable to the adversary while continuing to be
able to answer our adversaries decryption queries, Ci. We examine a series of experiments with the
first encrypting m0 to the last encrypting m1 showing that each successive pair is indistinguishable.

H0 H0 is the normal experiment above that encrypts m0.

Pr[Forge] is negligible in H0. If it were not, we could use our adversary, A, to break the
security guarantee of a challenger, C1−time, for the one-time secure signature scheme. We construct
a signature scheme adversary, A′, that receives V k from C1−time and passes it to A who returns
a forgery attempt, Ci. As Pr[Forge] is non-negligible, by passing Ci to C1−time we have a non-
negligible chance of verification, thus breaking the security guarantee of C1−time.

Pr[Fake] is negligible in H0. If it were not, we could with non-negligible probability cause the
NIZK Verifyto falsely accept a cypher text, Ci, with proof that all Cj,i encrypt the same message,
when two of them did not.

H1 H1 replaces σ,P from the NIZK proof system with simulations

σ ←Sim1

π ←Sim2.

If H0, H1 could be distinguished by a CCA2 adversary A, we could construct an adversary,
A′, of a NIZK system challenger C ′. Sometimes A′ creates and sends to A cipher text Ci =
(V k,C1,i,, · · · , Ck,i, π = P(), α), as in H0. Other times A′ creates and sends to A cipher text
Ci = (V k,C1,i, · · · , Ck,i, π = Sim2, α), as in H1. If the distribution of A’s responses b differ be-
tween these two situations then A′ has learned something extra from the NIZK challenger C ′ thus
breaking the NIZK system.

Pr[Forge] is negligible in H1. If it were not, we could break the signature scheme just as in H0.

Pr[Fake] is negligible in H1. On every query Ci by A, we can check that each Cj,i decrypts
to the same message. If Pr[Fake] increased between H0 and H1, we could use this to distinguish
between P and the simulator. As P is a NIZK proof system, this is a contradiction, thus there is
no detectable change in Pr[Fake] between H0 and H1, and so it is still negligible.

51

H1.5 Samples V k∗ for the encryption challenge in the beginning as part of Setup. Note that
the V k∗ we create for C∗ is separate from the V k sampled by the adversary when they create Ci

decryption requests. V k∗ is generated randomly so generating it early or just before we need it
will not affect the distribution of its values. V k∗ is only used in creating our challenge cipher, so
changing from creating it just prior to giving the challenge cipher to the adversary, to creating it
as some point earlier has no effect on the interaction with the adversary. Thus the distribution the
adversary sees is unchanged.

Pr[Forge] and Pr[Fake] do not change as no change is visible to the adversary. Thus they are
still negligible.

H1.75 Changes which secret key components we keep so that we know none of the challenge cipher
text’s secret key components, while still having the secret key components to answer decryption
oracle queries. As we now know V k∗ from the start, we can use the secret key components not
used by C∗ to decrypt the decryption oracle queries.

Consider the complement of V k∗, V k
∗
, i.e.

V k∗ =011 · · · 1
V k
∗
=100 · · · 0.

Highlighting the corresponding parts of our existing public key and an expanded secret key, we
have

Pk =

([
Pk1,0 Pk2,0 Pk3,0 · · · Pkk,0
Pk1,1 Pk2,1 Pk3,1 · · · Pkk,1

]
, σ

)
Sk =

[
Sk1,0 Sk2,0 Sk3,0 · · · Skk,0
Sk1,1 Sk2,1 Sk3,1 · · · Skk,1

]
.

For the challenge cipher, we will use only the V k∗ components of the Pk and we do not need
the V k∗ components of Sk, as we know the value of b. If we were to construct and publish the Pk
as before, and change our private Sk to keep only the V k

∗
components we can still provide and

grade the challenge cipher. We now have

Pk =

([
Pk1,0 Pk2,0 Pk3,0 · · · Pkk,0
Pk1,1 Pk2,1 Pk3,1 · · · Pkk,1

]
, σ

)

Sk =

[
Sk2,0 Sk3,0 · · · Skk,0

Sk1,1 · · ·

]
.

The adversary queries to the decryption oracle will have a V k different from V k∗. As Pr[Forge]
is negligible, at least one bit of the adversaries V k will have the same value as the corresponding
bit in V k

∗
. Thus there is always one V k

∗
component of Sk that we can use to decrypt the query.

As Pr[Fake] is negligible, this provides the same message as in H1.5.
Thus the changes from H1.5 to H1.75 are undetectable to the adversary. With H1.75 we have

ensured that when we create and present the challenge cipher we know none of the secret keys
necessary to decrypt it.

H2 Changes the challenge cipher from m0 to m1. As we do not know the secret keys to decrypt
m0, we can use semantic security to move from m0 to m1.

H3 Returns to the real σ, π. As in changing from H0 to H1, if the adversary, A, could detect the
change, we could use A to break the underlying NIZK proof system.

52

5.7.3 Use and Efficiency

This is an example of non-malleable cryptography. An example of its use is in preventing one
bidder in an auction from slightly increasing an opponents bid without knowledge of the opponent’s
unencrypted bid. It is not an efficient construction, but an efficient construction does exist in RSA.

Exercises

Exercise 5.1 Consider the execution of a two-party protocol in the presence of an adversary that
has full control of the communication channel between the two parties, such as omitting, modifying
or delaying messages at its choice. This kind of attack is often referred to as man-in-the-middle at-
tacks, and protocols that are secure against man-in-the-middle-attacks are said to be non-malleable.

Alice A Bob
−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

(a) Non-Malleable Public-Key Encryption. We consider a man-in-the-middle adversary
that receives a public-key encryption of m under public key pk and tries to “malleate” it into
a new encryption also under pk. The adversary is said to have succeeded if he outputs an
encryption of a value m̃ such that R(m, m̃) = 1, where R ⊆ {0, 1}n×{0, 1}n is a polynomial-
time computable non-reflexive relation (i.e., R(m,m) = 0). A also receives an auxiliary input
z. We define minA(pk,R,m, z) = 1 if and only if A(pk, z, c∗) produces a valid encryption of
m̃ such that R(m, m̃) = 1, where c∗ is an encryption of m under pk.

To define security, we consider a stand-alone execution where a simulator S directly out-
puts an encryption. S(pk, z) only receives pk and z as input (and not c∗). We define
staS(pk,R,m, z) = 1 if and only if S produces a valid encryption of m̃ under pk such that
R(m, m̃) = 1.

Definition 5.8 (Non-Malleable Public-Key Encryption) A public-key encryption scheme
(Gen,Enc,Dec) is said to be non-malleable if for every PPT man-in-the-middle adversary A,
there exists a PPT stand-alone simulator S such that for every non-reflexive polynomial-time
computable relation R, every m ∈ {0, 1}n, and every z ∈ {0, 1}∗, it holds that∣∣Pr[minA(pk,R,m, z) = 1]− Pr[staS(pk,R,m, z) = 1]

∣∣ ≤ negl(n)

where (pk, sk)← Gen(1n).

Prove that a CCA2 secure public-key encryption scheme is also non-malleable.

(b) Non-Malleable Commitment. We define non-malleable commitment in a similar way.
The man-in-the-middle adversary A receives a commitment to a value v and attempts to

53

commit to a related value ṽ. A succeeds if R(v, ṽ) = 1. Define minA(R, v, z) = 1 if and only
if A(c∗, z) produces a valid commitment to ṽ such that R(v, ṽ) = 1, where c∗ is a commitment
of v. In the stand-alone execution S commits to ṽ directly. Define staS(R, v, z) = 1 if and
only if S(z) produces a valid commitment to ṽ such that R(v, ṽ) = 1.

Definition 5.9 (Non-Malleable Commitment) A commitment scheme is said to be non-
malleable if for every PPT man-in-the-middle adversary A, there exists a PPT stand-alone
simulator S such that for every non-reflexive polynomial-time computable relation R ⊆ {0, 1}n×
{0, 1}n, every v ∈ {0, 1}n, and every z ∈ {0, 1}∗, the following holds.∣∣Pr[minA(R, v, z) = 1]− Pr[staS(R, v, z) = 1]

∣∣ ≤ negl(n).

Given a CCA2 secure public-key encryption scheme (Gen,Enc,Dec), define the commitment
scheme as

C(v) := (pk,Enc(pk, v))

where (pk, sk) ← Gen(1n). Show that such a commitment scheme is not necessarily non-
malleable.

54

Chapter 6

Zero-Knowledge Proofs

Traditional Euclidean style proofs allow us to prove veracity of statements to others. However,
such proof systems have two shortcomings: (1) the running time of the verifier needs to grow with
the length of the proof, and (2) the proof itself needs to be disclosed to the verifier. In this chapter,
we will provide methods enabling provers to prove veracity of statements of their choice to verifiers
while avoiding the aforementioned limitations. In realizing such methods we will allow the prover
and verifier to be probabilistic and also allow them to interact with each other.1

6.1 Interactive Proofs

Definition 6.1 (Interactive Proof System) For a language L we have an interactive proof
system if ∃ a pair of algorithms (or better, interacting machines) (P,V), where V is polynomial in
|x|, and both can flip coins, such that:

• Completeness: ∀x ∈ L
Pr
P,V

[OutputV(P(x)↔ V(x)) = 1] = 1,

• Soundness: ∀x /∈ L, ∀P∗

Pr
V
[OutputV(P∗(x)↔ V(x)) = 1] < neg(|x|),

where OutputV(P(x) ↔ V(x)) denotes the output of V in the interaction between P and V where
both parties get x as input. We stress that P and P∗ can be computationally unbounded.

Interactive Proof for Graph Non-Isomorphism (GNI). We say that two graphs G0 and
G1 are isomorphic, denoted G0

∼= G1, if ∃ an isomorphism f : V (G0)→ V (G1) s.t. (u, v) ∈ E(G0)
iff (f(u), f(v)) ∈ E(G1), where V (G) and E(G) are the vertex and edge sets of some graph G. On
the other hand, G0 and G1 are said to be non-isomorphic, G0 ≇ G1, if ∄ any such f , and GNI =
{(G0, G1)| G0 ≇ G1} be the language that consists of pairs of graphs that are not isomorphic.

GNI is not believed to have short proofs so an interactive proof could offer a prover a mechanism
to prove to a polynomially bounded verifier that two graphs are non-isomorphic.

The intuition behind a protocol to accomplish the above task is simple. Consider a verifier that
randomly rename the vertices of one of the graphs and give it to the prover. Can the prover given the
relabeled graph figure out which graph did the verifier start with? If G0 and G1 were not isomorphic

1Formally, they can be modeled as interactive PPT Turing Machines.

55

then an unbounded prover can figure this out. However, in case G0 and G1 are isomorphic then
the distribution resulting form random relabelings of G0 and G1 are actually identical. Therefore,
even an unbounded prover has no way of distinguishing which graph the verifier started with. So
the prover has only a 1

2 probability of guessing which graph the verifier started with. Note that
by repeating this process we can reduce the success probability of a cheating prover to negligible.
More formally:

• Completeness: If (G0, G1) ∈ GNI, then the unbounded P can distinguish isomorphism of G0

against those of G1 and can always return the correct b′. Thus, V will always output 1 for
this case.

• Soundness: If (G0, G1) /∈ GNI, then it is equiprobable that H is a random isomorphism of G0

as it is G1 and so P’s guess for b′ can be correct only with a probability 1
2 . Repeating this

protocol k times means the probability of guessing the correct b′ for all k interactions is 1
2k
.

And so the probability of V outputting 0 (e.g. rejecting P’s proof at the first sign of falter)
is 1− 1

2k
.

6.2 Zero Knowledge Proofs

Definition 6.2 (NP-Verifier) A language L has an NP-verifier if ∃ a verifier V that is polynomial
time in |x| such that:

• Completeness: ∀x ∈ L, ∃ a proof π s.t. V(x, π) = 1

• Soundness: ∀x /∈ L ∀ purported proof π we have V(x, π) = 0

That is, the conventional idea of a proof is formalized in terms of what a computer can efficiently
verify. So a set of statements considered true (e.g. in a language L) is complete and sound if a
proof can be written down that can be “easily” and rigorously verified if and only if a statement is
in the language.

Efficient Provers. Unfortunately (fortunately?), there aren’t real-life instances of all-powerful
provers that we know of. And for cryptography we must make more reasonable assumptions about
the provers. In this case we will assume provers are also bounded to be efficient.

Previously, if a prover wanted to prove that two graphs, G0 and G1 were isomorphic, it would
use its all-powerfulness to find the isomorphic mapping between the two graphs and give it to the

56

verifier to complete the proof. But now, being computationally bounded, the prover is in the same
boat as the verifier and can find a proof no better than the verifier can. In order for the prover to be
able to prove something that the verifier cannot find out on their own, the prover must have some
extra information. If, for example, the prover simply knew the isomorphism between the graphs,
this would be the sufficient extra information it needs to enact the proof. That’s a rather boring
proof though. We have interaction now! Can’t we do something fancier?

What if the prover wanted to prove that two graphs were isomorphic but didn’t want to fully
reveal the isomorphism that they know. If they’re lying and don’t know an isomorphism is their a
way we can exploit them again?

When G0 and G1 are isomorphic, the isomorphism between them would be a witness, w, to
that fact, that can be used in the proof. Unfortunately, the prover is being stubborn and won’t just
tell us that isomorphism, w : V (G0)→ V (G1), that they claim to have. The prover is comfortable
however giving us a “scrambled” version, ϕ, of w as long as it doesn’t leak any information about
their precious w. For example, the prover is willing to divulge ϕ = π◦w where π is a privately chosen
random permutation of |V | = |V (G0)| = |V (G1)| vertices. Since π renames vertices completely
randomly, it scrambles what w is doing entirely and ϕ is just a random permutation of |V | elements.
At this point, we might be a little annoyed at the prover since we could have just created a random
permutation on our own. This might give us an idea on how to gain a little more information
however, even though we gained none here:

If we want to be convinced that ϕ really is of the form π ◦w, thus containing w in its definition,
and isn’t just a completely random permuation, we can note that if it is of that form then ϕ(G0) =
π(w(G0)) = π(G1) (since w being an isomorphism implies that w(G0) = G1). Note that we started
with a mapping on input G0 and ended with a mapping on input G1. With an isormphism, one
could get from one graph to the other seamlessly; if the prover really has the isomorphism it claims
to have, then it should have no problem displaying this ability. So, what if we force the prover
to give us H = π(G1) just after randomly choosing its π and then let it show us its ability to go
from G1 to G0 with ease: give us a ϕ so that ϕ(G0) = π(G1) = H. The only way the prover can
give a mapping that jumps from G0 to G1 in such a way is if they know an isomorphism; if the
prover could find a ϕ efficiently but did not know an isomorphism then they would have been able
to see that π−1(ϕ(G0)) = G1 and thus have π−1 ◦ϕ as an isomorphism from G0 to G1, which would
contradict the assumed hardness of finding isomorphisms in the GI problem. So by forcing the
prover to give us H as we’ve defined and to produce a ϕ so that ϕ(G0) = H, we’ve found a way
to expose provers that don’t really have an isomorphism and we can then be convinced that they
really do know w when they pass our test. And the prover didn’t directly tell us w, so they may
be able to salvage some secrecy!

But not everything is airtight about this interaction. Why, for instance, would the prover be
willing to provide H = π(G1) when they’re trying to divulge as little information as possible? The
prover was comfortable giving us ϕ since we could have just simulated the process of getting a
completely random permutation of vertices ourselves, but couldn’t the additional information of
H reveal information about w? At this point, the annoyed feeling may return as we realize that,
H = π(G1) = π′(G0), for some π′, is just a random isomorphic copy of G0 and G1 as long as
G0
∼= G1; we could have just chosen a random π′, set H = π′(G0), and let ϕ = π′ and would

have created our very own random isomorphic copy, H, of G1 that satisfies our test condition
H = ϕ(G0) just like what we got from our interaction with the prover. We couldn’t have gained
any new information from the prover because we could have run the whole test on our own!

Well, something must be wrong; we couldn’t have been convinced of something without gaining
any new information. Indeed, the test has a hole in it: how can we force the prover to give us
H = π(G1) like we asked? If the prover is lying and it knows our test condition is to verify that

57

H = ϕ(G0), the prover might just cheat and give us H = π(G0) so it doesn’t have to use knowledge
of w to switch from G1 to G0. And, in fact, by doing this and sending ϕ = π, the prover would
fool us!

To keep the prover on their toes, though, we can randomly switch whether or not we want H to
equal ϕ(G0) or ϕ(G1). If, in our interaction, the prover must first provide their H = π(G1) before
we let them know which we want, they then lock themselves into a commitment to either G0 or G1

depending on whether they’re trying to cheat or not, respectively. They only have a 50% chance
of committing to the same case we want on a given round and so, if they don’t have w to deftly
switch between G0 and G1 to always answer correctly, they again have to be an extremely lucky
guesser if they’re trying to lie.

Again, we’ve created an interactive scheme that can catch dishonest provers with probability
1- 1

2k
and where we always believe honest provers!

• Completeness: If (G0, G1) ∈ GI and P knows w, then whether V chooses b = 0 or 1, P can
always give the correct ϕ which, by definition, will always result in H = ϕ(Gb) and so V will
always output 1.

• Soundness: If (G0, G1) /∈ GI, then P can only cheat, as discussed earlier, if the original H it
commits to ends up being π(Gb) for the b that is randomly chosen at the next step. Since
b isn’t even chosen yet, this can only happen by chance with probability 1

2 . And so the
probability V outputs 0 is 1− 1

2k
for k rounds.

And so, again, we’ve correctly captured the idea of a proof by having this interaction. But
there’s a strange feeling that may be lingering around us...

As a verifier, we’ve seen some things in interacting with the prover. Surely, clever folks like
ourselves must be able to glean some information about w after seeing enough to thoroughly
convince us that the prover knows w. We’ve first seen H, and we’ve also seen the random b that we
chose, along with ϕ at the end; this is our whole view of information during the interaction. But
we’re more bewildered than annoyed this time when we realize we could have always just chosen b
and ϕ randomly and set H = ϕ(Gb) on our own. Again, everything checks out when G0

∼= G1 and
we could have produced everything that we saw during the interaction before it even began. That
is, the distribution of the random variable triple (H, b, ϕ) is identical whether it is what we saw
from the prover during the interaction or it is yielded from the solitary process we just described.
We’ve just constructed a complete interactive proof system that entirely convinces us of the prover’s
knowledge of w, yet we could have simulated the whole experience on our own! We couldn’t have
gain any knowledge about w since we didn’t see anything we couldn’t have manufactured on own,

58

yet we are entirely convinced that (G0, G1) ∈ GI and that P knows w! And so the prover has
proven something to us yet has given us absolutely zero additional knowledge!

This may feel very surprising or as if you’ve been swindled by a fast talker, and it very much
should feel this way; it was certainly an amazing research discovery! But this is true, and it can be
made rigorous:

We should first be sure what we want out of this new proof system. We of course want it to
be complete and sound so that we accept proofs iff they’re true. But we also want the verifier to
gain zero knowledge from the interaction; that is, the verifier should have been able to simulate
the whole experience on its own without the verifier. Finally, we would also like all witnesses to a
true statement to each be sufficient to prove the veracity of that statement and so we let R be the
relation s.t. x ∈ L iff ∃ a witness w s.t. (x,w) ∈ R. We can then gather all witness by defining
R(x) to be the set of all such witnesses.

Definition 6.3 (Honest Verifier Zero Knowledge Proof [HVZK]) For a language L we have
a (perfect) HVZK proof system w.r.t. witness relation R if ∃ an interactive proof system, (P,V)
s.t. ∃ a PPT machine S (called the simulator) s.t. ∀x ∈ L, ∀w ∈ R(x) the following distributions
are identical:

V iewV(P(x,w)↔ V(x))

S(x)

where V iewV(P(x,w)↔ V(x)) is the random coins of V and all the messages V saw.

Remark 6.1 In the above definition, V iewV(P(x,w) ↔ V(x)) contains both the random coins of
V and all the messages that V saw, because they together constitute the view of V, and they are
correlated. If the random coins of V are not included in the definition of V iewV(P(x,w)↔ V(x)),
then even if S can generate all messages that V saw with the same distribution as in the real
execution, the verifier may still be able to distinguish the two views using its random coins.

There is an interesting progression of the requirements of a proof system: Completeness, Sound-
ness, and the Zero Knowledge property. Completeness first cares that a prover-verifier pair exist
and can capture all true things as a team that works together; they both honestly obey the protocol
trying prove true statements. Soundness, however, assumes that the prover is a liar and cares about
having a strong enough verifier that can stand up to any type of prover and not be misled. Finally,
Zero Knowledge assumes that the verifier is hoping to glean information from the proof to learn
the prover’s secrets and this requirement makes sure the prover is clever enough that it gives no
information away in its proof.

Unlike the soundness’ requirment for a verifier to combat all malicious provers, HVZK is only
concerned with the verifier in the original prover-verifier pair that follows the set protocol. Verifiers
that stray from the protocol or cheat, however, are captured in the natural generalization to Zero
Knowledge proofs.

Definition 6.4 (Efficient Prover Zero-Knowledge Proof) We say (P, V) is an efficient prover
zero-knowledge proof system for a language L and relation RL if

1. The prover P runs in polynomial time.

2. The protocol is complete. That is, for every x ∈ L there exists a witness w ∈ RL(x) such that

Pr[P (x,w)↔ V (x) accepts] = 1.

59

3. The protocol is sound against unbounded provers. That is, for ∀x /∈ L, we have

Pr[P ∗(x,w)↔ V (x) rejects] ≥ 1/2

for any prover P ∗ of arbitrary computation power and any witness w.

4. There exists an expected polynomial time probabilistic machine S (a simulator) such that for
all PPT V ∗, for all x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗ we have

{V iewV ∗(P (x,w)↔ V ∗(x, z))} ≃c {SV ∗
(x, z)}

The soundness probability can be amplified to be greater than any 1−1/2k, for arbitrary k > 0,
by repeating the proof k times. More precisely, we construct an efficient prover zero-knowledge
proof system (P̃ , Ṽ) which repeats (P, V) independently for k times, and Ṽ accepts if and only if
V accepts in all the executions.

It is easy to see that P̃ runs in polynomial time and that the protocol is complete. Moreover,
it has the following soundness guarantee: for ∀x /∈ L,

Pr
[
P̃ ∗(x,w)↔ Ṽ (x) rejects

]
=1− Pr [∀1 ≤ i ≤ k, P ∗i (x,w)↔ V (x) accepts]

=1−
k∏

i=1

Pr [P ∗i (x,w)↔ V (x) accepts]

≥1− 1

2k

for any prover P̃ ∗ = (P ∗1 , · · · , P ∗k) of arbitrary computation power and any witness w.
Finally, it is zero-knowledge, namely, there exists an expected PPT S̃ such that for all PPT Ṽ ∗,

and for all x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗,{
V iewṼ ∗(P̃ (x,w)↔ Ṽ ∗(x, z))

}
≃c

{
S̃Ṽ ∗

(x, z)
}
.

The construction of S̃ is repeating S for k times. We prove by hybrid argument that the above
two distributions are indistinguishable. Hi is defined to be the output of repeating S for the first i
executions with Ṽ ∗ and repeating P for the rest k − i executions. Then H0 is the left distribution
and Hk is the right one. Any attacher that can distinguish the above two distributions leads to an
attacker that can distinguish Hi−1 and Hi for some 1 ≤ i ≤ k, which violates the zero-knowledge
property of the original proof system (P, V).

The order of the quantifiers in item 4 matters. If we quantify over x and w before quantifying
over the simulator, then we could hard-code x and w into our simulator. That is, for all x ∈ L,w ∈
RL(x), there exists an expected polynomial time probabilistic machine Sx,w such that for all PPT
V ∗ and z ∈ {0, 1}∗,

{V iewV ∗(P (x,w)↔ V ∗(x, z))} ≃c {SV ∗
x,w(x, z)}

Since we would like our simulator to be universal, this is not acceptable.
If we quantify first over the verifier V ∗ and then over simulators S, then this variant is considered

as non-black-box zero-knowledge. Our standard definition is considered as black-box zero-knowledge.
There also exist variants that use statistical indistinguishability rather than computational indis-
tinguishability.

The z in item 4 is considered as auxiliary input. The auxiliary input is crucial for the above
argument of soundness amplification.

We will discuss the importance of requiring expected polynomial time in the next section.

60

6.3 Graph Isomorphism

Recall our protocol for graph isomorphism: the interaction is P (x,w) ↔ V (x) where x represents
graphs G0 = (V,E0) and G1 = (V,E1) and w represents a permutation π on V such that π(G0) =
G1.

1. P samples a random permutation σ : V → V and sends the graph H = σ(G1) to V .

2. V samples a random bit b and sends it to P .

3. If b = 1, then P defines a permutation τ to be σ. If b = 0, then instead τ = σ ◦ π. P then
sends τ to V .

4. V verifies that τ(Gb) = H and accepts if so.

We will show that this is an efficient prover zero-knowledge proof system. It is clear that if G0

and G1 are isomorphic, then this protocol will succeed with probability 1.

For soundness, observe that if G0 is not isomorphic to G1, then the graph H that P sends to
V in step 1 of the protocol can be isomorphic to at most one of G0 or G1. Since V samples a bit
b uniformly at random in step 2, then there is a probability of at most 1/2 that P can produce a
valid isomorphism in step 3.

For zero knowledge, consider the following simulator S with input G0 and G1 (with vertex set
V) and verifier V ∗:

1. Guess a bit b uniformly at random.

2. Sample a permutation π : V → V uniformly at random and send π(Gb) to V
∗.

3. Receive b′ form V ∗.

4. If b = b′, then output (π(Gb), b, π) and terminate. Otherwise, restart at step 1.

Note that if G0 ≃ G1, then π(Gb) is statistically independent of b because b and π are sampled
uniformly. Thus, with probability 1/2, V ∗ will output b so on average, two attempts will be needed
before S terminates. It follows that S will terminate in expected polynomial time.

Since b is sampled uniformly at random, π(Gb) is uniformly distributed with all graphs of the
form σ(G1) where σ is sampled uniformly at random from permutations on V . Thus, the output
π(Gb) in our simulator will be identically distributed with the output H in our graph isomorphism
protocol.

In step 3 of our graph isomorphism protocol, note that τ is distributed uniformly at random.
This is because composing a uniformly random permutation with a fixed permutation will not
change its distribution. Thus τ will be identically distributed with π in our simulator. It follows
that the transcripts outputted by our simulator will be identically distributed with the transcripts
produced by the graph isomorphism protocol.

6.4 Zero-Knowledge for NP

An n-coloring of a graph G = (A,E) is a function c : A → {1, . . . , n} such that if (i, j) ∈ E, then
c(i) ̸= c(j). So we want to paint each vertex of a graph a certain color so that the endpoints of any
edge are colored differently.

61

In the graph 3-coloring problem (3COL), we are given a graph and asked if there exists a 3-
coloring. In this section, we will provide a computational zero knowledge proof for 3COL. It is a
fact that 3COL is NP-complete, so any problem in NP has a polynomial time reduction to 3COL.
Thus, by giving a zero knowledge proof for 3COL, we will show that there are zero knowledge
proofs for all of NP.

We will first give a high-level description of a zero-knowledge protocol for 3COL. Suppose a
prover P wants to convince a verifier V that his graph G is 3-colorable without revealing what
the coloring c actually is. If the three colors we use are red, green, and blue, then note that if we
colored all the red vertices blue, all the green vertices red, and all the blue vertices green, we would
still have a valid 3-coloring. In fact, if ϕ was any permutation on the color set of red, green, and
blue, then ϕ ◦ c would be a valid 3-coloring of G.

P asks V to leave the room and then samples a random permutation ϕ of the three colors. He
colors the vertices of G according to ϕ ◦ c, then covers all the vertices with cups. At this point, P
invites V back into the room. V is allowed to pick one edge and then uncover the two endpoints of
the edge. If the colors on the two endpoints are the same, then V rejects P ’s claim that the graph
is 3-colorable.

If the colors on the two endpoints are different, then V leaves the room again, P samples ϕ
randomly, and the process repeats itself. Certainly if G is actually 3-colorable, then V will never
reject the claim. If G is not 3-colorable, then there will always be an edge with endpoints that are
colored identically and V will eventually uncover such an edge.

Note that V does not gain any information on the coloring because it is masked by a (possibly)
different random permutation every time V uncovers an edge. Of course this protocol depends on
P not being able to quickly recolor the endpoints of an edge after removing the cups. This is why
we need commitment schemes.

6.4.1 Commitment Schemes

We want to construct a protocol between a sender and a receiver where the sender sends a bit to
the receiver, but the receiver will not know the value of this bit until the sender chooses to ”open”
the data that he sent. Of course, this protocol is no good unless the receiver can be sure that the
sender was not able to change the value of his bit in between when the receiver first obtained the
data and when the sender chose to open it.

Definition 6.5 A commitment scheme is a PPT machine C taking input (b, r) that satisfies two
properties:

• (perfect binding) For all r, s, we have C(0, r) ̸= C(1, s).

• (computational hiding) {C(0, Un)} ≃c {C(1, Un)}

So for the sender to ”open” the data, he just has to send his value of r to the receiver. We say
that r is a decommitment for C(x, r). Why do we require perfect binding instead of just statistical
binding? If there existed even a single pair r, s where C(0, r) = C(1, s), then the sender could
cheat. If he wished to reveal a bit value of 0 then he could just offer r and if he wished to reveal a
bit value of 1 then he could just offer s.

We can use injective one-way functions to construct commitment schemes.

Theorem 6.1 If injective one-way functions exist, then so do commitment schemes.

62

Proof. We can let f be an injective one-way function. Recall from Lecture 3 that f ′(x, r) :=
(f(x), r) will also be an injective one-way function with hard-core bit B(x, r) := ⟨x, r⟩. We claim
that C(b, x, r) := (f ′(x, r), b⊕B(x, r)) is a commitment scheme.

If (x, r) ̸= (y, s) then C(0, x, r) ̸= C(0, y, s) because f ′ is injective. Since C(0, x, r) = (f ′(x, r), B(x, r)) ̸=
(f ′(x, r), B(x, r)) = C(1, x, r), then C satisfies perfect binding.

Suppose D can distinguish C(0, Un) from C(1, Un). Then we can distinguish B(x, r) from
B(x, r) given f ′(x, r) which contradicts the fact that B(x, r) is a hard-core bit for f ′(x, r). Thus,
C has the computational hiding property.

We can extend the definition of commitment schemes to hold for messages longer than a sin-
gle bit. These commitment schemes will work by taking our commitment schemes for bits and
concatenating them together. For the extended definition, we require that for any two messages
m0 and m1 of the same length, the ensembles {C(m0, Un)} and {C(m1, Un)} are computationally
indistinguishable.

6.4.2 3COL Protocol

Below we describe the protocol P (x, z)↔ V (x), where x describes a graph G = ({1, . . . , n}, E) and
z describes a 3-coloring c:

1. P picks a random permutation π : {1, 2, 3} → {1, 2, 3} and defines the 3-coloring β := π ◦ c
of G. Using a commitment scheme C for the messages {1, 2, 3}, P defines αi = C(β(i), Un)
for each i ∈ V . P sends α1, α2, . . . , αn to V .

2. V uniformly samples an edge e = (i, j) ∈ E and sends it to P .

3. P opens αi and αj .

4. V will accept only if it received valid decommitments for αi and αj , and if β(i) and β(j) are
distinct and valid colors.

It is clear that this protocol is PPT. If G is not 3-colorable, then there will be at least a 1/|E|
probability that V will reject P ’s claim in step 4. Since |E| ≤ n2 we can repeat the protocol
polynomially many times to increase the rejection probability to at least 1/2.

We will now show that this protocol is zero-knowledge. We describe a simulator S below, given
a verifier V ∗:

1. Sample an edge e = (i, j) ∈ E uniformly at random.

2. Assign ci and cj to have distinct values from {1, 2, 3} and do so uniformly at random. Set
ck := 1 for all k ̸= i, j.

3. Compute n random keys r1, . . . , rn and set αi = C(ci, ri) for all i.

4. Let e′ ∈ E be the response of V ∗ upon receiving α1, . . . , αn.

5. If e′ ̸= e, then terminate and go back to step 1. Otherwise, proceed. If S returns to step 1
more than 2n|E| times, then output fail and halt the program.

6. Print α1, . . . , αn, e, send ri and rj to V ∗ and then print whatever V ∗ responds with.

63

By construction, S will run in polynomial time. However, sometimes it may output a fail
message. We will show that this occurs with negligible probability.

Suppose that for infinitely many graphs G, V ∗ outputs e′ = e in step 4 with probability less
than 1/2|E|. If this is true, then it is possible for us to break the commitment scheme C that we
use in S. Consider a modified version of S called S̃, where in step 2 we set ci = 1 for all i. Note
that in this case, V ∗ cannot distinguish between any of the edges so the probability that it returns
e′ = e is 1/|E|.

If we gave V ∗ a set of commitments αk = C(1, rk) for random keys rk, then we would be in
the setting of S̃. If we gave V ∗ the commitments αk but with two of the values set to C(c, r) and
C(c′, r′) where c, c′ are distinct random values from {1, 2, 3} and r, r′ are random keys, then we
are in the setting of S. This implies that it possible to distinguish between these two commitment
settings with a probability of at least 1/2|E| which is non-negligible. It follows that V ∗ outputs
e′ = e with probability less than 1/2|E| for only finitely many graphs G.

Thus, the probability that S outputs fail in the end is less than (1− 1/2|E|)2n|E| < 1/en which
is negligible.

Now we need to argue that the transcripts generated by S are computationally indistinguishable
from the transcripts generated by P ↔ V ∗. Again, we consider a modified version of S, called S′,
given a 3-coloring of its input G as auxiliary input. In step 2 of the simulation, S′ will choose a
random permutation of the colors in its valid 3-coloring for the values of ci rather than setting all
but two values ci and cj equal to 1. Note that this is how our protocol between P and V behaves.

Observe that P ↔ V ∗ is computationally indistinguishable from S′ because S′ outputs fail with
negligible probability. Thus, it suffices to show that S and S′ are computationally indistinguishable.
Again, we will suppose otherwise and argue that as a result we can distinguish commitments.

We consider two messages m0 and m1 of the same length where m0 consists of n− 2 instances
of the message 1 and two committed colors ci and cj (for a random edge (i, j) ∈ E) and m1 consists
of a committed random 3-coloring of G (with a random edge (i, j) ∈ E) chosen. Observe that by
feeding the former message to V ∗ we are in the setting of S′ and by feeding the latter message to
V ∗ we are in the setting of S. If we could distinguish those two settings, then we could distinguish
the commitments for m0 and m1. This contradiction completes our argument that our 3-coloring
protocol is zero-knowledge.

Exercises

Exercise 6.1 (Leaky ZK proof) Formally define:

1. What it means for an interactive proof (P, V) to be first-bit leaky zero-knowledge, where we
require that the protocol doesn’t leak anything more than the first bit of the witness.

2. What it means for an interactive proof (P, V) to be one-bit leaky zero-knowledge, where we
require that the protocol doesn’t leak anything more than one bit that is an arbitrary adversarial
chosen function of the witness.

Exercise 6.2 (Proving OR of two statements) Give a statistical zero-knowledge proof system
Π = (P, V) (with efficient prover) for the following language.

L =
{
((G0, G1), (G

′
0, G

′
1))
∣∣∣G0 ≃ G1

∨
G′0 ≃ G′1

}
Caution: Make sure the verifier doesn’t learn which of the two pairs of graphs is isomorphic.

64

Exercise 6.3 (ZK implies WI) Let L ∈ NP and let (P, V) be an interactive proof system for L.
We say that (P, V) is witness indistinguishable (WI) if for all PPT V ∗, for all x ∈ L, distinct wit-
nesses w1, w2 ∈ RL(x) and auxiliary input z ∈ {0, 1}∗, the following two views are computationally
indistinguishable:

V iewV ∗ (P (x,w1)↔ V ∗(x, z)) ≃c V iewV ∗ (P (x,w2)↔ V ∗(x, z)) .

1. Show that if (P, V) is an efficient prover zero-knowledge proof system, then it is also witness
indistinguishable.

2. Assume (P, V) is an efficient prover zero-knowledge proof system. We have seen in the exer-
cise that (P, V) is also witness indistinguishable. Define (P̃ , Ṽ) to repeat (P, V) independently
for k times in parallel (k is a polynomial), and Ṽ accepts if and only if V accepts in all the
executions. Prove that (P̃ , Ṽ) is still witness indistinguishable.

65

66

Chapter 7

Bilinear Maps

We introduce Bilinear Maps and two of its applications: NIKE, Non-Interactive Key Exchange;
and IBE, Identity Based Encryption.

7.1 Diffie-Hellman Key Exchange

Alice Bob

private a private b

public A public B
A B

send at the same time

a,B → K b,A → K

Eve

Figure 7.1: Diffie-Hellman Key Exchange

Fig 7.1 illustrates Diffie-Hellman key exchange. Alice and Bob each has a private key (a and b
respectively), and they want to build a shared key for symmetric encryption communication. They
can only communicate over a insecure link, which is eavesdropped by Eve. So Alice generates a
public key A and Bob generates a public key B, and they send their public key to each other at
the same time. Then Alice generates the shared key K from a and B, and likewise, Bob generates
the shared key K from b and A. And we have ∀ PPT Eve, Pr[k = Eve(A,B)] = neg(k), where k
is the length of a.

7.1.1 Discussion 1

Assume that ∀(g, p), and a1, b1
$← Z∗p , and a2, b2, r

$← Z∗p , we have (ga1 , gb1 , ga1b1)
c≃ (ga2 , gb2 , gr).

How to apply this to Diffie-Hellman Key Exchange?

Make A = ga, B = gb, K = Ab = gab, and K = Ba = gab.

67

7.1.2 Discussion 2

How does Diffie-Hellman Key Exchange imply Public Key Encryption?

Alice pk = A, sk = a, Enc(pk,m ∈ {0, 1}).

Bob b, r ← Z∗p (gb,mAb + (1−m)gr)

Alice Dec(sk, (c1, c2))

ca1
?
= c2

7.2 Bilinear Maps

Definition 7.1 Bilinear Maps

Bilinear Maps is (G,P,GT , g, e), where e is an efficient function G×G→ GT such that

• if g is generator of G, then e(g, g) is the generator of GT .

• ∀a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab = e(gb, ga).

7.2.1 Discussion 1

How does Bilinear Maps apply to Diffie-Hellman?

Make A = ga, B = gb, and T = gab, then Diffie-Hellman has e(A,B) = e(g, T).

68

7.3 Tripartite Diffie-Hellman

A B

Alice

private a

public A

a,B,C → K

Bob

private b

public B

b,A,C → K

Eve

Carol

private c

public C

c,A,B → K

C

Figure 7.2: Tripartite Diffie-Hellman Key Exchange

Fig 7.3 illustrates Tripartite Diffie-Hellman key exchange. a, b, and c are private key of Alice,
Bob, and Carol, respectively. They use ga, gb, gc as public key, and the shared key K = e(g, g)abc.
Formally, we have

a, b, c
$← Z∗p , r

$← Z∗p

A = ga, B = gb, C = gc

K = e(g, g)abc

7.4 IBE: Identity-Based Encryption

IBE contains four steps: Setup, KeyGen, Enc, and Dec. We illustrate it in Figure 7.4. In first step,
Key authority get a Master Public Key (MPK) and Master Signing Key (MSK) from Setup(1k).
Then a user with an ID (in this example, “Mike”), sends his ID to the key authority. The key
authority generates the Signing Key of Mike with KeyGen(MSK, ID) ans sends it back. Another
use, Alice, wants to send an encrypted message to Mike. She only has MPK and Mike’s ID. So she
encrypts the message with c = Enc(MPK, ID = Mike,m), and sends the encrypted message c
to Mike. Mike decodes c with m = Dec(c, SKMike). Notice that Alice never need to know Mike’s
public key. She only needs to remember MPK and other people’s IDs.

69

②
iii.

 SK ID
=S

K Mike

Key Authority
①. (MPK, MSK) ← Setup(1k)

Mike
②

i. I
D=M

ike

②ii. SKID ← KeyGen(MSK, ID)

Alice wants to send a
message to Mike, and
she only knows MPK.

 ③i. c=Enc(MPK, ID=Mike, m)

 ③ii. c ④. m=Dec(c, SKMike)

Alice

Figure 7.3: Identity-Based Encryption

Formally, we have

Pr


(MPK,MSK)← Setup(1k),

SKID ← KeyGen(MSK, ID),

c← Enc(MPK, ID,m),

m← Dec(SKID, c)

 = 1

7.4.1 Security Descriptions

We have different security descriptions for IBE, as discussed in this section.

CCA1

Challenger Adversary

(MPK,MSK)← Setup(1k)
MPK−−−−→
ID1←−−

SKID1 ← KeyGen(MSK, ID1)
SKID1−−−−→

...
...

...
IDi←−−

SKIDi ← KeyGen(MSK, IDi)
SKIDi−−−−→

ID∗,m0,m1←−−−−−−− ∀i ∈ [q], ID∗ ̸= IDi

b
$← {0, 1}, c∗ = Enc(MPK, ID∗,mb)

c∗−→
Output 1 if b′ = b, otherwise 0

b′←−

CCA2

In CCA2, we allow adversary to send further queries after getting c∗.

70

Challenger Adversary

(MPK,MSK)← Setup(1k)
MPK−−−−→
ID1←−−

SKID1 ← KeyGen(MSK, ID1)
SKID1−−−−→

...
IDi←−−

SKIDq ← KeyGen(MSK, IDq)
SKIDq−−−−→

ID∗,m0,m1←−−−−−−− ∀i ∈ [q′], ID∗ ̸= IDi

b
$← {0, 1}, c∗ = Enc(MPK, ID∗,mb)

c∗−→
IDq+1←−−−−

SKIDq+1 ← KeyGen(MSK, IDq+1)
SKIDq+1−−−−−−→

...
...

...
IDq′←−−−

SKIDq′ ← KeyGen(MSK, IDq′)
SKIDq′−−−−−→

Output 1 if b′ = b, otherwise 0
b′←−

Selective Security

In selective security, the adversary sends ID∗ before everything.
Challenger Adversary

ID∗
←−− ∀i ∈ [q], ID∗ ̸= IDi

(MPK,MSK)← Setup(1k)
MPK−−−−→
ID1←−−

SKID1 ← KeyGen(MSK, ID1)
SKID1−−−−→

...
...

...
IDq←−−

SKIDq ← KeyGen(MSK, IDq)
SKIDq−−−−→
m0,m1←−−−−

b
$← {0, 1}, c∗ = Enc(MPK, ID∗,mb)

c∗−→
Output 1 if b′ = b, otherwise 0

b′←−

7.4.2 Discussion 1

How does Bilinear Maps apply to IBE?
Given Bilinear Maps: (G,P,GT , g, e), we have

1. (G,P,GT , g, e)← Setup(1k)

2. s← Z∗p , and H1 : {0, 1}∗ → G, H2 : GT → {0, 1}n

3. MPK = (G, gs, H1, H2), and MSK = (s)

Let’s look at how we construct each function in IBE.

71

KeyGen(s, ID):

1. Output SKID = (H1(ID))s

Enc(MPK, ID,m):

1. r ← Z∗p

2. c1 = gr

3. c2 = m⊕H2(e(A,H1(ID)r)), where A = gs

4. Output (c1, c2)

Dec(SKID, (c1, c2)):

1. Get e(A,H1(ID)r) = e(H1(ID)s, c1) = e(SKID, c1)

2. Get m = c2 ⊕H2(e(A,H1(ID))r)

Proof. To prove this, we use a hybrid argument. Assume we have two oracles with exact random
functions, denoted as OH1 and OH2 . One can request a random string from them with a query ID.
The random strings are denoted as H1(ID) and H2(ID), respectively. These two oracles keep track
of query IDs and corresponding responses. If a query ID was seen before, they return the exact
same response corresponding to it. If not, they generate a random string, correspond the string to
the ID, and return the string.

We first define H0, in which H1(ID) and H2(ID) are generated by the oracles. We use the
construction described above.

Challenger Adversary
G,ID∗
←−−−− ∀i ∈ [q], ID∗ ̸= IDi

gs←−
OH1←−−−
OH2←−−−
ID1←−−

SKID1 ← KeyGen(s, ID1)
SKID1−−−−→

...
...

...
IDq←−−

SKIDq ← KeyGen(s, IDq)
SKIDq−−−−→
m0,m1←−−−−

b
$← {0, 1}, c∗ = Enc(MPK, ID∗,mb)

c∗−→
Output 1 if b′ = b, otherwise 0

b′←−
Then we discard oracle’s H1, and use H1(ID) = gαID , where αID ← Z∗p . We denote this as H1.
Then we change SKID to SKID = (H1(ID))s = (gαID)s. We denote this as H2.
We have Bilinear Decision Diffie-Hellman (DDH). If H2 breaks DDH, then H0 can as well.

72

In DDH, we have (ga, gb, gc, e(g, g)abc)
c≃ (ga, gb, gc, e(g, g)r). We denoteA = ga, B = gb, C = gc.

And in H2, we have A = gs, B = H1(ID
∗), C = c1 = gr. And in c2 = m ⊕H2(e(g

s, H1(ID
∗))r),

we have T = H2(e(g
s, H1(ID

∗))r) = e(g, g)abc.

73

74

Chapter 8

Secure Computation

8.1 Introduction

Secure multiparty computation considers the problem of different parties computing a joint function
of their separate, private inputs without revealing any extra information about these inputs than
that is leaked by just the result of the computation. This setting is well motivated, and captures
many different applications. Considering some of these applications will provide intuition about
how security should be defined for secure computation:

Voting: Electronic voting can be thought of as a multi party computation between n players: the
voters. Their input is their choice b ∈ {0, 1} (we restrict ourselves to the binary choice setting
without loss of generality), and the function they wish to compute is the majority function.

Now consider what happens when only one user votes: their input is trivially revealed as the
output of the computation. What does privacy of inputs mean in this scenario?

Searchable Encryption: Searchable encryption schemes allow clients to store their data with a
server, and subsequently grant servers tokens to conduct specific searches. However, most
schemes do not consider access pattern leakage. This leakage tells the server potentially
valuable information about the underlying plaintext. How do we model all the different kinds
information that is leaked?

From these examples we see that defining security is tricky, with lots of potential edge cases to
consider. We want to ensure that no party can learn anything more from the secure computation
protocol than it can from just its input and the result of the computation. To formalize this, we
adopt the real/ideal paradigm.

8.2 Real/Ideal Paradigm

Notation. Suppose there are n parties, and party Pi has access to some data xi. They are trying
to compute some function of their inputs f(x1, . . . , xn). The goal is to do this securely: even if some
parties are corrupted, no one should learn more than is strictly necessitated by the computation.

Real World. In the real world, the n parties execute a protocol Π to compute the function f .
This protocol can involve multiple rounds of interaction. The real world adversary A can corrupt
arbitrarily many (but not all) parties.

75

Ideal World. In the ideal world, an angel helps in the computation of f : each party sends their
input to the angel and receives the output of the computation f(x1, . . . , xn). Here the ideal world
adversary S can again corrupt arbitrarily many (but not all) parties.

To model malicious adversaries, we need to modify the ideal world model as follows. Some
parties are honest, and each honest party Pi simply sends xi to the angel. The other parties are
corrupted and are under control of the adversary S. The adversary chooses an input x′i for each
corrupted party Pi (where possibly x′i ̸= xi) and that party then sends x′i to the angel. The angel
computes a function f of the values she receives (for example, if only party 1 is honest, then the
angel computes f(x1, x

′
2, x
′
3, . . . , x

′
n)) in order to obtain a tuple (y1, . . . , yn). She then sends yi of

corrupted parties to the adversary, who gets to decide whether or not honest parties will receive
their response from the angel. The angel obliges. Each honest party Pi then outputs yi if they
receive yi from the angel and ⊥ otherwise, and corrupted parties output whatever the adversary
tells them to.

Definition of Security. A protocol Π is secure against computationally bounded adversaries if
for every PPT adversary A in the real world, there exists an PPT adversary S in the ideal world
such that for all tuples of bit strings (x1, . . . , xn), we have

RealΠ,A(x1, . . . xn)
c≃ IdealF,S(x1, . . . , xn)

where the left-hand side denotes the output distribution induced by Π running with A, and the
right-hand side denotes the output distribution induced by running the ideal protocol F with S.
The ideal protocol is either the original one described for semi-honest adversaries, or the modified
one described for malicious adversaries.

Assumptions. We have brushed over some details of the above setting. Below we state these
assumptions explicitly:

1. Communication channel: We assume that the communication channel between the in-
volved parties is completely insecure, i.e., it does not preserve the privacy of the messages.
However, we assume that it is reliable, which means that the adversary can drop messages,
but if a message is delivered, then the receiver knows the origin.

2. Corruption model: We have different models of how and when the adversary can corrupt
parties involved in the protocol:

• Static: The adversary chooses which parties to corrupt before the protocol execution
starts, and during the protocol, the malicious parties remain fixed.

• Adaptive: The adversary can corrupt parties dynamically during the protocol execution,
but the simulator can do the same.

• Mobile: Parties corrupted by the adversary can be “uncorrupted” at any time during
the protocol execution at the adversary’s discretion.

3. Fairness: The protocols we consider are not “fair”, i.e., the adversary can cause corrupted
parties to abort arbitrarily. This can mean that one party does not get its share of the output
of the computation.

4. Bounds on corruption: In some scenarios, we place upper bounds on the number of parties
that the adversary can corrupt.

76

5. Power of the adversary: We consider primarily two types of adversaries:

• Semi-honest adversaries: Corrupted parties follow the protocol execution Π honestly,
but attempt to learn as much information as they can from the protocol transcript.

• Malicious adversaries: Corrupted parties can deviate arbitrarily from the protocol Π.

6. Standalone vs. Multiple execution: In some settings, protocols can be executed in iso-
lation; only one instance of a particular protocol is ever executed at any given time. In
other settings, many different protocols can be executed concurrently. This can compromise
security.

8.3 Oblivious transfer

Rabin’s oblivious transfer sets out to accomplish the following special task of two-party secure
computation. The sender has a bit s ∈ {0, 1}. She places the bit in a box. Then the box reveals
the bit to the receiver with probability 1/2, and reveals ⊥ to the receiver with probability 1/2.
The sender cannot know whether the receiver received s or ⊥, and the receiver cannot have any
information about s if they receive ⊥.

8.3.1 1-out-of-2 oblivious transfer

1-out-of-2 oblivious transfer sets out to accomplish the following related task. The sender has two
bits s0, s1 ∈ {0, 1} and the receiver has a bit c ∈ {0, 1}. The sender places the pair (s0, s1) into
a box, and the receiver places c into the same box. The box then reveals sc to the receiver, and
reveals ⊥ to the sender (in order to inform the sender that the receiver has placed his bit c into
the box and has been shown sc). The sender cannot know which of her bits the receiver received,
and the receiver cannot know anything about s1−c.

Lemma 8.1 A system implementing 1-out-of-2 oblivious transfer can be used to implement Rabin’s
oblivious transfer.

Proof. The sender has a bit s. She randomly samples a bit b ∈ {0, 1} and r ∈ {0, 1}, and the
receiver randomly samples a bit c ∈ {0, 1}. If b = 0, the sender defines s0 = s and s1 = r, and
otherwise, if b = 1, she defines s0 = r and s1 = s. She then places the pair (s0, s1) into the
1-out-of-2 oblivious transfer box. The receiver places his bit c into the same box, and then the box
reveals sc to him and ⊥ to the sender. Notice that if b = c, then sc = s, and otherwise sc = r.
Once ⊥ is revealed to the sender, she sends b to the receiver. The recieiver checks whether or not
b = c. If b = c, then he knows that the bit revealed to him was s. Otherwise, he knows that the
bit revealed to him was the nonsense bit r and he regards it as ⊥.

It is easy to see that this procedure satisfies the security requirements of Rabin’s oblivious
transfer protocol. Indeed, as we saw above, sc = s if and only if b = c, and since the sender knows
b, we see that knowledge of whether or not the bit sc received by the receiver is equal to s is
equivalent to knowledge of c, and the security requirements of 1-out-of-2 oblivious transfer prevent
the sender from knowing c. Also, if the receiver receives r (or, equivalently, ⊥), then knowledge of
s is knowledge of the bit that was not revealed to him by the box, which is again prevented by the
security requirements of 1-out-of-2 oblivious transfer.

77

Lemma 8.2 A system implementing Rabin’s oblivious transfer can be used to implement 1-out-of-2
oblivious transfer.

Proof sketch. The sender has two bits s0, s1 ∈ {0, 1} and the receiver has a single bit c. The
sender randomly samples 3n random bits x1, . . . , x3n ∈ {0, 1}. Each bit is placed into its own a
Rabin oblivious transfer box. The ith box then reveals either xi or else ⊥ to the receiver. Let

S := {i ∈ {1, . . . , 3n} : the receiver knows xi}.

The receiver picks two sets I0, I1 ⊆ {1, . . . , 3n} such that #I0 = #I1 = n, Ic ⊆ S and I1−c ⊆
{1, . . . , 3n} \ S. This is possible except with probability negligible in n. He then sends the pair

(I0, I1) to the sender. The sender then computes tj =
(⊕

i∈Ij xi

)
⊕sj for both j ∈ {0, 1} and sends

(t0, t1) to the receiver.

Notice that the receiver can uncover sc from tc since he knows xi for all i ∈ Ic, but cannot
uncover s1−c. One can show that the security requirement of Rabin’s oblivious transfer implies
that this system satisfies the security requirement necessary for 1-out-of-2 oblivious transfer.

We will see below that length-preserving one-way trapdoor permutations can be used to realize
1-out-of-2 oblivious transfer.

Theorem 8.1 The following protocol realizes 1-out-of-2 oblivious transfer in the presence of com-
putationally bounded and semi-honest adversaries.

1. The sender, who has two bits s0 and s1, samples a random length-preserving one-way trapdoor
permutation (f, f−1) and sends f to the receiver. Let b(·) be a hard-core bit for f .

2. The receiver, who has a bit c, randomly samples an n-bit string xc ∈ {0, 1}n and computes
yc = f(xc). He then samples another random n-bit string y1−c ∈ {0, 1}n, and then sends
(y0, y1) to the sender.

3. The sender computes x0 := f−1(y0) and x1 := f−1(y1). She computes b0 := b(x0) ⊕ s0 and
b1 := b(x1)⊕ s1, and then sends the pair (b0, b1) to the receiver.

4. The receiver knows c and xc, and can therefore compute sc = bc ⊕ b(xc).

Proof. Correctness is clear from the protocol. For security, from the sender side, since f is a
length-preserving permutation, (y0, y1) is statistically indistinguishable from two random strings,
hence she can’t learn anything about c. From the receiver side, guessing s1−c correctly is equivalent
to guessing the hard-core bit for y1−c.

8.3.2 1-out-of-4 oblivious transfer

We describe how to implement a 1-out-of-4 OT using 1-out-of-2 OT:

1. The sender, P1 samples 5 random values Si ← {0, 1} , i ∈ {1, . . . , 5}.

2. P1 computes

α0 = S0 ⊕ S2 ⊕m0

α1 = S0 ⊕ S3 ⊕m1

α2 = S1 ⊕ S4 ⊕m2

α3 = S1 ⊕ S5 ⊕m3

78

It sends these values to P2.

3. The parties engage in 3 1-out-of-2 Oblivious Transfer protocols for the following messages:
(S0, S1), (S2, S3), (S4, S5). THe receiver’s input for the first OT is the first choice bit, and
for the second and third ones is the second choice bit.

4. The receiver can only decrypt one ciphertext.

8.4 Yao’s Two Party Computation Protocol

Yao’s Two Party Protocol is a protocol conducted between two parties for computing any function.
It is obtained by combining two primitives: a scheme for garbling circuits and oblivious transfer.
Informally, the idea is that one party (say P1) garbles a circuit. This involves assigning random
labels to each wire of the circuit, including the input and output wires. P1 then sends the garbled
circuit and the labels corresponding to its input wires to P2. The two parties then engage in
an oblivious transfer protocol to transfer the labels corresponding to P2’s inputs to P2. P2 then
evaluates the garbled circuit using the two sets of input labels to get the result of the computation.

Problem Setup: Let G and W be the gates and wires respectively in U , the universal circuit.
Let wi be the ith input wire, i ∈ [n], and wout be the output wire.

Definition 8.1 (Garbling Scheme) A garbling scheme is a pair of ppt. algorithms (Garble,Eval):

• Garble(1κ, C) →
(
C̃, {labi,bi}i∈[n],bi∈{0,1}

)
. The circuit C has n input wires and one output

wire.

• Eval(1κ, C̃, {labi,xi}i∈[n])→ y.

It satisfies the following two properties:

Correctness: ∀ C, x, we have that

Pr[(C̃, labi,bi)← Garble(1κ, C) ∧ y ← Eval(1κ, C̃, labi,xi) ∧ y = C(x)] = 1

Security: ∃ simulator S s.t. ∀ C, x, we have that

(C̃, {labi,xi})
c
≈ S(1κ, C(x))

8.4.1 Construction:

We construct a garbling scheme:

79

Garble(1κ, C):
1. For each w ∈W , sample (k0w, k

1
w) as encryption keys.

2. For each g ∈ G with input wires w0, w1, and output wire w2, set

eg := (Enckaw0
(Enckbw1

(0κ||kg(a,b)w2
)))

a,b∈{0,1}

3. Set C̃ := ((eg)g∈G, k
0
wout
→ 0, k1wout

→ 1).

4. Set labi,bi := kbiwi
.

5. Output (C̃, labi,bi).

Eval(1κ, C̃, {labi,xi}i∈[n]):
1. For each gate g ∈ G, obtain labw2 ← Declabw0

(Declabw1
(eg)).

Figure 8.1: Definition of a garbling scheme

8.4.2 Proof of Security

Proof. We construct a ppt. simulator Sim such that ∀x ∈ {0, 1}n:{
C̃, labi,xi

}
c
≈ {Sim(1κ, C(x))}

Sim(1κ, C(x)):
1. Sample random kw, k

′
w ∀w ∈W .

2. For each g ∈ G with input wires w0, w1 and output wire w2, set eg as
• Enckw0

(Enckw1
(0κ||kw2))

• Enckw0
(Enck′w1

(0κ||kw2))

• Enck′w0
(Enckw1

(0κ||kw2))

• Enck′w0
(Enck′w1

(0κ||kw2))

3. Output C̃ := ((eg)g∈G, kwout → C(x), k′wout
→ 1− C(x)).

Figure 8.2: Simulator for security of garbled circuits

We prove that the output of this simulator is indistinguishable from the actual view of the
circuit evaluator via a series of hybrids:

H0 =
{
C̃, labi,xi

}
c
≈ H1

c
≈ · · ·

c
≈ HT−1

c
≈ {Sim(1κ, C(x))} = HT

We proceed by replacing eg’s gate by gate. The idea is to replace the three non-opened entries
with encryptions of the only wire which is correct. Say the input labels are k0w0

, k1w1
. Originally, eg

consists of

Enck0w0
(Enck0w1

(0κ||kg(0,0)w2
))

Enck0w0
(Enck1w1

(0κ||kg(0,1)w2
))

...

For each a, b ∈ {0, 1}, we replace the encrypted values with Enckaw0
(Enckbw1

(0κ||kg(0,1)w2)). By the

semantic security of the encryption scheme, this new e′g is indistinguishable from the original eg.
Hence each hybrid is indistinguishable from the previous one.

80

8.5 GMW Protocol

Yao’s protocol is limited to two party computation. Goldreich, Micali and Wigderson (GMW)
created the first secure multiparty computation protocol. Here we give an informal sketch of the
protocol, limiting ourselves to two parties for simplicity of exposition.

Let P1’s input be x1, and P2’s input be x2. Each party creates a secret share of their input and
sends it to the other party. For example, P1 samples a random a, and computes b1 = a1 ⊕ x1. P2

does the same for x2. P1 gets the a shares, and P2 gets the b shares. Computing NOT,XOR, and
AND gates is done as follows:

• NOT gates: Each party simply flips their share of the input bit.

• XOR gates: Since x1⊕x2 = (a1⊕ b1)⊕ (a2⊕ b2) = (a1⊕a2)⊕ (b1⊕ b2), each party can simply
XOR their shares separately.

• AND gates: (a1 ⊕ b1) · (a2 ⊕ b2) = ((a1 · a2) ⊕ (b1 · b2)) ⊕ ((a1 · b2) ⊕ (a2 · b1)). We see
that each party can compute the first parts with the shares they possess. However, to get
the remaining, they need to know the other party’s shares, which compromises security. So
instead, the parties utilize 1-out-of-4 oblivious transfer to compute the AND gate.

The setup is as follows: P1 samples a random bit a. This its share of the result of the gate.
It computes the following table:

b1 b2 b3
0 0 (a1 · a2)⊕ a
0 1 (a1 · ¬a2)⊕ a
1 0 (¬a1 · a2)⊕ a
1 1 (¬a1 · ¬a2)⊕ a

The intuition for the entries in the table is that when b1 = b2 = 1, the AND gate becomes
(a1 ⊕ b1) · (a2 ⊕ b2) = (a1 ⊕ 1) · (a2 ⊕ 1) = (¬a1) · (¬a2). The other entries are computed
similarly.

P1 computes each of the possible values of b3, and feeds them as input to the OT. P2 feeds
in (b1, b2) to the OT, and gets some secret share. Thus both parties possess a share of the
correct output.

8.6 Malicious attacker intead of semi-honest attacker

The assumption we had before consisted of a semi-honest attacker instead of a malicious attacker. A
malicious attacker does not have to follow the protocol, and may instead alter the original protocol.
The main idea here is that we can convert a protocol aimed at semi-honest attackers into one that
will work with malicious attackers.

At the beginning of the protocol, we have each party commit to its inputs: Given a commitment
protocol com, Party 1 produces

c1 = com(x1;w1)
d1 = com(r1;ϕ1)

Party 2 produces

81

c2 = com(x2;w2)
d2 = com(r2;ϕ2)

We have the following guarantee: ∃xi, ri, wi, ϕi such that ci = com(xi;wi)∧di = com(ri;ϕi)∧t =
π(i, transcript, xi, ri), where transcript is the set of messages sent in the protocol so far.

Here we have a potential problem. Since both parties are choosing their own random coins,
we have to be able to enforce that the coins are indeed random. We can solve this by using the
following protocol:

d1 = com(s1;ϕ1)
-

d2 = com(s2;ϕ2)
�

s
′
2

-
s
′
1

�

We calculate r1 = s1 ⊕ s
′
1, and r2 = s2 ⊕ s

′
2. As long as one party is picking the random coins

honestly, both parties would have truly random coins.

Furthermore, during the first commitment phase, we want to make sure that the committing
party actually knows the value that is being committed to. Thus, we also attach along with the
commitment a zero-knowledge proof of knowledge (ZK-PoK) to prove that the committing party
knows the value that is being committed to.

8.6.1 Zero-knowledge proof of knowledge (ZK-PoK)

Definition 8.2 (ZK-PoK) Zero-knowlwedge proof of knowledge (ZK-PoK) is a zero-knowledge
proof system (P, V) with the property proof of knowledge with knowledge error κ:

∃ a PPT E (knowledge extractor) such that ∀x ∈ L and ∀P ∗ (possibly unbounded), it holds that
if Pr[OutV (P

∗(x,w)↔ V (x))] > κ(x), then

Pr[EP ∗
(x) ∈ R(x)] ≥ Pr[OutV (P

∗ ↔ V (x))] = 1]− κ(x).

Here we have L be the language, R be the relation, and R(x) is the set such that ∀w ∈ R(x),
(x,w) ∈ R.

Given a zero-knowledge proof system, we can construct a ZK-PoK system for statement x ∈ L
with witness w as follows:

82

P V

r ← {0, 1}|w|
c1 = com(r;ω)
c2 = com(r ⊕ w;ϕ)

-

b
�

if b = 0, open c1 to reveal r
else open c2 to reveal r ⊕ w

-

ZK Proof

The last ZK proof proves that ∃r, w, ω, ϕ such that (x,w) ∈ R and c1 = com(r;ω), c2 =
com(r ⊕ w;ϕ).

Exercises

Exercise 8.1 Given a (secure against malicious adversaries) two-party secure computation protocol
(and nothing else) construct a (secure against malicious adversaries) three-party secure computation
protocol.

83

84

Chapter 9

Witness Encryption

9.1 A Story

Imagine that a billionaire who loves mathematics, would like to award with 1 million dollars the
mathematician(s) who will prove the Riemann Hypothesis. Of course, neither does the billionaire
know if the Riemann Hypothesis is true, nor if he will be still alive (if and) when a mathematician
will come up with a proof. To overcome these couple of problems, the billionaire decides to:

1. Put 1 million dollars in gold in a big treasure chest.

2. Choose an arbitrary place of the world, dig up a hole, and hide the treasure chest.

3. Encrypt the coordinates of the treasure chest in a message so that only the mathematician(s)
who can actually prove the Riemann Hypothesis can decrypt it.

4. Publish the ciphertext in every newspaper in the world.

The goal of this lecture is to help the billionaire with step 3. To do so, we will assume for
simplicity that the proof is at most 10000 pages long. The latter assumption implies that the
language

L = {x such that x is an acceptable Riemann Hypothesis proof}

is in NP and therefore, using a reduction, we can come up with a circuit C that takes as input x
and outputs 1 if x is a proof for the Riemann Hypothesis and 0 otherwise.

Our goal now is to design a pair of PPT machines (Enc,Dec) such that:

1. Enc(C,m) takes as input the circuit C and m ∈ {0, 1} and outputs a ciphertext e ∈ {0, 1}∗.

2. Dec(C, e, w) takes as input the circuit C, the cipertext e and a witness w ∈ {0, 1}∗ and
outputs m if if C(w) = 1 or ⊥ otherwise.

and so that they satisfy the following correctness and security requirements:

• Correctness: If ∃w such that C(w) = 1 then Dec(C, e, w) outputs m.

• Security: If ∄w such that C(w) = 1 then Enc(C, 0) ≈c Enc(C, 1) (where ≈c means “com-
putationally indistinguishable”).

85

9.2 A Simple Language

As a first example, we show how we can design such an encryption scheme for a simple language.
Let G be a group of prime order and g be a generator of the group. For elements A,B, T ∈ G
consider the language L = {(a, b) : A = ga, B = gb, T = gab}. An encryption scheme for that
language with the correctness and security requirements of Section 9.1 is the following:

• Encryption(g,A,B, T,G):

– Choose elements r1, r2 ∈ Z∗p uniformly and independently.

– Let c1 = Ar1gr2 , c2 = gmT r1Br2 , where m ∈ {0, 1} is the message we want to encrypt.

– Output c = (c1, c2)

• Decryption(b):

– Output c2
cb1

Correctness: The correcntess of the above encryption scheme follows from the fact that if
there exist (a, b) ∈ L then:

c2

cb1
=

gmT r1Br2

(Ar1gr2)b

=
gm
(
gab
)r1 (gb)r2

(ga)r1b gr2b

= gm

Since m ∈ {0, 1} and we know g, the value of gm implies the value of m.

Security: As far as the security of the scheme is concerned, since L is quite simple, we can
actually prove that m is information-theoretically hidden. To see this, assume there does not exist
(a, b) ∈ L, but an adversary has the power to compute discrete logarithms. In that case, given c1
and c2 the adversary could get a system of the form:

ar1 + r2 = s1

m+ rr1 + br2 = s2

where s1 and s2 are the discrete logarithms of c1 and c2 respectively (with base g), and r ̸= ab is an
element of Z∗p such that T = gr. Observe now that for each value of m there exist numbers r1 and
r2 so that the above system has a solution, and thus m is indeed information-theoretically hidden
(on the other hand, if we had that ab = r then the equations are linearly dependent).

86

9.3 An NP Complete Language

In this section we focus on our original goal of designing an encryption for an NP complete language
L. Specifically, we will consider the NP-complete problem exact cover. Besides that, we introduce
the n-Multilinear Decisional Diffie-Hellman (n-MDDH) assumption and the Decisional Multilinear
No-Exact-Cover Assumption. The latter will guarantee the security of our construction.

9.3.1 Exact Cover

We are given as input x = (n, S1, S2, . . . , Sl), where n is an integer and each Si, i ∈ [l] is a subset
of [n], and our goal is to find a subset of indices T ⊆ [l] such that:

1. ∪i∈TSi = [n] and

2. ∀i, j ∈ T such that i ̸= j we have that Si ∩ Sj = ∅.

If such a T exists, we say that T is an exact cover of x.

9.3.2 Multilinear Maps

Mutlinear maps is a generalization of bilinear maps (which we have already seen) that will be useful
in our construction. Specifically, we assume the existence of a group generator G, which takes as
input a security parameter λ and a positive integer n to indicate the number of allowed operations.
G(1λ, n) outputs a sequence of groups G⃗ = (G1,G2, . . . ,Gn) each of large prime order P > 2λ. In
addition, we let gi be a canonical generator of Gi (and is known from the group’s description).

We also assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥ 1; i+j ≤ n}.
The map ei,j satisfies the following relation:

ei,j

(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp (9.1)

and we observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid i, j.

9.3.3 The n-MDDH Assumption

The n-Multilinear Decisional Diffie-Hellman (n-MDDH) problem states the following: A challenger
runs G(1λ, n) to generate groups and generators of order p. Then it picks random s, c1, . . . , cn ∈
Zp. The assumption then states that given g = g1, g

s, gc1 , . . . , gcn it is hard to distinguish T =

g
s
∏

j∈[1,n] cj
n from a random group element in Gn, with better than negligible advantage (in security
parameter λ).

87

9.3.4 Decisional Multilinear No-Exact-Cover Assumption

Let x = (n, S1, . . . , Sl) be an instance of the exact cover problem that has no solution. Let param←
G(11+n, n) be a description of a multilinear group family with order p = p(λ). Let a1, a2, . . . , an, r

be uniformly random in Zp. For i ∈ [l], let ci = g

∏
j∈Si

aj

|Si| . Distiguish between the two distributions:

(params, c1, . . . , cl, g
a1a2...an
n) and (params, c1, . . . , cl, g

r
n)

The Decisional Multilinear No-Exact-Cover Assumption is that for all adversariesA, there exists
a fixed negligible function ν(·) such that for all instances x with no solution, A’s distinguishing
advantage against the Decisional Multilinear No-Exact-Cover Problem for x is at most ν(λ).

9.3.5 The Encryption Scheme

We are now ready to give the description of our encryption scheme.

• Enc(x,m) takes as input x = (n, S1, . . . , Sl) and the message m ∈ {0, 1} and:

– Samples a0, a1, . . . , an uniformly and independently from Z∗p.

– ∀i ∈ [l] let ci = g

∏
j∈Sj

aj

|Si|

– Sample uniformly an element r ∈ Z∗p

– Let d = d(m) be g

∏
j∈[n] aj

n if m = 1 or grn if m = 0.

– Output c = (d, c1, . . . , cl)

• Dec(x, T), where T ⊆ [l] is a set of indices, computes
∏

i∈T ci and outputs 1 if the latter value
equals to d or 0 otherwise.

• Correctness: Assume that T is an exact cover of x. Then, it is not hard to see that:∏
i∈T

ci =
∏
i∈T

g

∏
j∈Sj

aj

|Si|

= g

∏
j∈[n] aj

n

where we have used (9.1) repeatedly and the fact that T is an exact cover (to show that∑
i∈T |Si| = n and that

∏
i∈T
∏

j∈Si
aj =

∏
i∈[n] ai).

• Security: Intuitively, the construction is secure, since the only way to make g

∏
j∈[n] ai

n is to
find an exact cover of [n]. As a matter of fact, observe that if an exact cover does not exist,
then for each subset of indices T ′(such that ∪i∈T ′Sj = [n]) we have that

n∑
i=1

|Si| > n,

which means that
∏

i∈T
∏

j∈Si
aj is different than

∏
j∈[n] aj . Formally, the security is based

on the Decisional Multilinear No-Exact-Cover Assumption.

88

Chapter 10

Obfuscation

The problem of program obfuscation asks whether one can transform a program (e.g., circuits,
Turing machines) to another semantically equivalent program (i.e., having the same input/output
behavior), but is otherwise intelligible. It was originally formalized by Barak et al. who constructed
a family of circuits that are non-obfuscatable under the most natural virtual black box (VBB)
security.

10.1 VBB Obfuscation

As a motivation, recall that in a private-key encryption setting, we have a secret key k, encryption
Ek and decryption Dk. A natural candidate for public-key encryption would be to simply release
an encryption E′k ≡ Ek (i.e. E′k semantically equivalent to Ek, but computationally bounded
adversaries would have a hard time figuring out k from E′k.

Definition 10.1 (Obfuscator of circuits under VBB) O is an obfuscator of circuits if

1. Correctness: ∀c,O(c) ≡ c.

2. Efficiency: ∀c, |O(c)| ≤ poly (|c|).

3. VBB: ∀A,A is PPT bounded, ∃ S (also PPT) s.t. ∀c,∣∣∣Pr [A (O(c)) = 1]− Pr
[
Sc(1|c|) = 1

]∣∣∣ ≤ negl(|c|).

Similarly we can define it for Turing machines.

Definition 10.2 (Obfuscator of TMs under VBB) O is an obfuscator of Turing machines if

1. Correctness: ∀M,O(M) ≡M .

2. Efficiency: ∃q(·) = poly (·) ,∀M (M(x) halts in t steps =⇒ O(M)(x) halts in q(t) steps).

3. VBB: Let M ′(t, x) be a TM that runs M(x) for t steps. ∀A,A is PPT bounded, ∃ Sim (also
PPT) s.t. ∀c, ∣∣∣Pr [A (O(M)) = 1]− Pr

[
SM ′

(1|M
′|) = 1

]∣∣∣ ≤ negl(
∣∣M ′∣∣).

89

Let’s show that our candidate PKE from VBB obfuscator O is semantic secure, using a simple
hybrid argument.
Proof. Recall the public key PK = O(Ek). Let’s assume Ek is a circuit.

H0 :A({(PK,Ek(m0))})
H1 :S

c({Ek(m0)}) by VBB

H2 :S
c({Ek(m1)}) by semantic security of private key encryption

H3 :A({(PK,Ek(m1))}) by VBB

Unfortunately VBB obfuscator for all circuits does not exist. Now we show the impossiblity
result of VBB obfuscator.

Theorem 10.1 Let O be an obfuscator. There exists PPT bounded A, and a family (ensemble) of
functions {Hn}, {Zn} s.t. for every PPT bounded simulator S,

A (O(Hn)) = 1 & A (O(Zn)) = 0∣∣∣Pr [SHn

(
1|Hn|

)
= 1
]
− Pr

[
SZn

(
1|Zn|

)
= 1
]∣∣∣ ≤ negl(n).

Proof. Let α, β
$← {0, 1}n.

We start by constructing A′, Cα,β, Dα,β s.t.

A′ (O(Cα,β), O(Dα,β)) = 1 & A′ (O(Zn), O(Dα,β)) = 0∣∣Pr [SCα,β ,Dα,β (1) = 1
]
− Pr

[
SZn,Dα,β (1) = 1

]∣∣ ≤ negl(n).

Cα,β(x) =

{
β, if x = α,

0n, o/w

Dα,β(c) =

{
1, if c(α) = β,

0, o/w.

Clearly A′(X,Y) = Y (X) works. Now notice that input length to D grows as the size of O(C).
However for Turing machines which can have the same description length, one could combine

the two in the following way:

Fα,β(b, x) =

{
Cα,β(x), b = 0

Dα,β(x), b = 1
.

Let OF = O(Fα,β), OF0(x) = OF (0, x), similarly for OF1, then A would be just A(OF) =
OF1(OF0).

Now assuming OWF exists, specifically we already have priavte-key encryption, we modify D
as follows.

Dα,β
k (1, i) = Enck(αi)

Dα,β
k (2, c, d,⊙) = Enck(Deck(c)⊙Deck(d)),where ⊙ is a gate of AND, OR, NOT

Dα,β
k (3, γ1, · · · , γn) =

{
1, ∀i,Deck(γi) = βi,

0, o/w.

Now the adversary A just simulate O(C) gate by gate with a much smaller O(D), thus we can
use the combining tricks as for the Turing machines.

90

10.2 Indistinguishability Obfuscation

Definition 10.3 (Indistinguishability Obfuscator) A uniform PPT machine iO is an indis-
tinguishability obfuscator for a collection of circuits Cκ if the following conditions hold:

• Correctness. For every circuit C ∈ Cκ and for all inputs x, C(x) = iO(C(x)).

• Polynomial slowdown. For every circuit C ∈ Cκ, |iO(C)| ≤ p(|C|) for some polynomial p.

• Indistinguishability. For all pairs of circuits C1, C2 ∈ Cκ, if |C1| = |C2| and C1(x) = C2(x)

for all inputs x, then iO(C1)
c≃ iO(C2). More precisely, there is a negligible function ν(k)

such that for any (possibly non-uniform) PPT A,∣∣Pr[A(iO(C1)) = 1]− Pr[A(iO(C2)) = 1]
∣∣ ≤ ν(k).

Proposition 10.1 Indistinguishability obfuscation implies witness encryption.

Proof. Recall the witness encryption scheme, with which one could encrypt a message m to an

instance x of an NP language L, such that Dec (x,w,Enc (x,m)) =

{
m, if(x,w) ∈ L,
⊥, o/w

Let Cx,m(w) be a circuit that on input w, outputs m if and only if (x,w) ∈ L. Now we construct
witness encryption as follows: Enc (x,m) = iO (Cx,m) ,Dec (x,w, c) = c(w).

Semantic security follows from the fact that, for x ̸∈ L, Cx,m is just a circuit that always output
⊥, and by indistinguishability obfuscation, we could replace it with a constant circuit (padding if
necessary), and then change the message, and change the circuit back.

Proposition 10.2 Indistinguishability obfuscation and OWFs imply public key encryption.

Proof. We’ll use a length doubling PRG F : {0, 1}n → {0, 1}2n, together with a witness encryption
scheme (E,D). The NP language for the encryption scheme would be the image of F .

Gen(1n) = (PK = F (s), SK = s), s
$← {0, 1}n

Enc (PK,m) = E(x = PK,m)

Dec (e, SK = s) = D(x = PK,w = s, c = e).

Proposition 10.3 Every best possible obfuscator could be equivalently achieved with an indistin-
guishability obfuscation (up to padding and computationally bounded).

Proof. Consider circuit c, the best possible obfuscated BPO(c), and c′ which is just padding c to
the same size of BPO(c). Computationally bounded adversaries cannot distinguish between iO (c′)
and iO (BPO(c)).

Note that doing iO never decreases the “entropy” of a circuit, so iO (BPO(c)) is at least as
secure as BPO(c).

91

10.3 iO for Polynomial-sized Circuits

Definition 10.4 (Indistinguishability Obfuscator for NC1) Let Cκ be the collection of cir-
cuits of size O(κ) and depth O(log κ) with respect to gates of bounded fan-in. Then a uniform
PPT machine iONC1 is an indistinguishability obfuscator for circuit class NC1 if it is an indis-
tinguishability obfuscator for Cκ.

Given an indistinguishability obfuscator iONC1 for circuit class NC1, we shall demonstrate how
to achieve an indistinguishability obfuscator iO for all polynomial-sized circuits. The amplification
relies on fully homomorphic encryption (FHE).

Definition 10.5 (Homomorphic Encryption) A homomorphic encryption scheme is a tuple of
PPT algorithms (Gen,Enc,Dec,Eval) as follows:

• (Gen,Enc,Dec) is a semantically-secure public-key encryption scheme.

• Eval(pk, C, e) takes public key pk, an arithmetic circuit C, and ciphertext e = Enc(pk, x) of
some circuit input x, and outputs Enc(pk, C(x)).

As an example, the ElGamal encryption scheme is homomorphic over the multiplication func-
tion. Consider a cyclic group G of order q and generator g, and let sk = a and pk = ga. For
ciphertexts Enc(pk,m1) = (gr1 , gar1 ·m1) and Enc(pk,m2) = (gr2 , gar2 ·m2), observe that

Enc(pk,m1) · Enc(pk,m2) = (gr1+r2 , ga(r1+r2) ·m1 ·m2) = Enc(pk,m1 ·m2)

Note that this scheme becomes additively homomorphic by encrypting gm instead of m.

Definition 10.6 (Fully Homomorphic Encryption) An encryption scheme is fully homomor-
phic if it is both compact and homomorphic for the class of all arithmetic circuits. Compactness
requires that the size of the output of Eval(·, ·, ·) is at most polynomial in the security parameter κ.

10.3.1 Construction

Let (Gen,Enc,Dec,Eval) be a fully homomorphic encryption scheme. We require that Dec be
realizable by a circuit in NC1. The obfuscation procedure accepts a security parameter κ and a
circuit C whose size is at most polynomial in κ.

1. Generate (pk1, sk1)← Gen(1κ) and (pk2, sk2)← Gen(1κ).

2. Encrypt C, encoded in canonical form, as e1 ← Enc(pk1, C) and e2 ← Enc(pk2, C).

3. Output an obfuscation σ = (iONC1(P), pk1, pk2, e1, e2) of program Ppk1,pk2,sk1,e1,e2 as de-
scribed below.

The evaluation procedure accepts the obfuscation σ and program input x.

1. Let U be a universal circuit that computes C(x) given a circuit description C and input x,
and denote by Ux the circuit U(·, x) where x is hard-wired. Let R1 and R2 be the circuits
which compute f1 ← Eval(Ux, e1) and f2 ← Eval(Ux, e2), respectively.

2. Denote by ω1 and ω2 the set of all wires in R1 and R2, respectively. Compute π1 : ω1 → {0, 1}
and π2 : ω2 → {0, 1}, which yield the value of internal wire w ∈ ω1, ω2 when applying x as
the input to R1 and R2.

92

3. Output the result of running Ppk1,pk2,sk1,e1,e2(x, f1, π1, f2, π2).

Program Ppk1,pk2,sk1,e1,e2 has pk1, pk2, sk1, e1, and e2 embedded.

1. Check whether R1(x) = f1 ∧R2(x) = f2. π1 and π2 enable this check in logarithmic depth.

2. If the check succeeds, output Dec(sk1, f1); otherwise output ⊥.

The use of two key pairs and two encryptions of C, similar to CCA1-secure schemes seen previ-
ously, eliminates the virtual black-box requirement for concealing sk1 within iONC1(Ppk1,pk2,sk1,e1,e2).

10.3.2 Proof of Security

We prove the indistinguishability property for this construction through a hybrid argument.
Proof. Through the sequence of hybrids, we gradually transform an obfuscation of circuit C1

into an obfuscation of circuit C2, with each successor being indistinguishable from its antecedent.

H0 : This corresponds to an honest execution of iO(C1). Recall that e1 = Enc(pk1, C1), e2 =
Enc(pk2, C1), and σ = (iONC1(Ppk1,pk2,sk1,e1,e2), . . .).

H1 : We instead generate e2 = Enc(pk2, C2), relying on the semantic security of the underlying
fully homomorphic encryption scheme.

H2 : We alter program Ppk1,pk2,sk2,e1,e2 such that it instead embeds sk2 and outputs Dec(sk2, f2).
The output of the obfuscation procedure becomes σ = (iONC1(Ppk1,pk2,sk2,e1,e2 , . . .); we rely
on the properties of functional equivalence and indistinguishability of iONC1 .

H3 : We generate e1 = Enc(pk1, C1) since sk1 is now unused, relying again on the semantic security
of the fully homomorphic encryption scheme.

H4 : We revert to the original program Ppk1,pk2,sk1,e1,e2 and arrive at an honest execution of iO(C1).

10.4 Identity-Based Encryption

Another use of indistinguishability obfuscation is to realize identity-based encryption (IBE).

Definition 10.7 (Identity-Based Encryption) An identity-based encryption scheme is a tuple
of PPT algorithms (Setup,KeyGen,Enc,Dec) as follows:

• Setup(1κ) generates and outputs a master public/private key pair (mpk,msk).

• KeyGen(msk, id) derives and outputs a secret key skid for identity id.

• Enc(mpk, id,m) encrypts message m under identity id and outputs the ciphertext.

• Dec(skid, c) decrypts ciphertext c and outputs the corresponding message if c is a valid encryp-
tion under identity id, or ⊥ otherwise.

We combine an indistinguishability obfuscator iO with a digital signature scheme (Gen, Sign,Verify).

• Let Setup ≡ Gen and KeyGen ≡ Sign.

• Enc outputs iO(Pm), where Pm is a program that outputs (embedded) message m if input sk
is a secret key for the given id, or ⊥ otherwise.

93

• Dec outputs the result of c(skid).

However, this requires that we have encryption scheme where the “signatures” do not exist. We
therefore investigate an alternative scheme. Let (K,P, V) be a non-interactive zero-knowledge
(NIZK) proof system. Denote by Com(·; r) the commitment algorithm of a non-interactive com-
mitment scheme with explicit random coin r.

• Let σ be a common random string. Setup(1κ) outputs (mpk = (σ, c1, c2),msk = r1), where
c1 = Com(0; r1) and c2 = Com(0|id|; r2).

• KeyGen(msk, id) produces a proof π = P (σ, xid, s) for the following language L: x ∈ L if there
exists s such that

c1 = Com(0; s)︸ ︷︷ ︸
Type I witness

∨ (c2 = Com(id∗; s) ∧ id∗ ̸= id)︸ ︷︷ ︸
Type II witness

• Let Pid,m be a program which outputs m if V (σ, xid, πid) = 1 or outputs ⊥ otherwise.

Enc(mpk, id,m) outputs iO(Pid,m).

We briefly sketch the hybrid argument:

H0 : This corresponds to an honest execution as described above.

H1 : We let c2 = Com(id∗; r2), relying on the hiding property of the commitment scheme.

H2 : We switch to the Type II witness using πidi∀i ∈ [q], corresponding to the queries issued by
the adversary during the first phase of the selective-identity security game.

H3 : We let c1 = Com(1; r1).

10.5 Digital Signature Scheme via Indistinguishable Obfuscation

A digital signature scheme can be constructed via indistinguishable obfuscation (iO). A digital
signature scheme is made up of (Setup, Sign,Verify).

(vk, sk)← Setup(1k):
sk = key of puncturable function and the seed of the PRF Fk

vk = iO(Pk) where Pk is the program:
Pk(m,σ):

for some OWF function f
return 1 if f(σ) = f(Fk(m))
return 0 otherwise

σ ← Sign(sk,m): Output Fk(m).

Verify(vk,m, σ): Output Pk(m,σ).

Our security requirements will be that the adversary does wins the following game negligibly:

94

Challenger Adversary
(vk, sk) = Setup(1k) and
picks random m

Pk,m→
σ,m∗
←
Adversary wins game if Verify(vk,m∗, σ) = 1

To prove the security of this system, we use a hybrid argument. H0 is as above.

H1: Adjust vk so that vk = iO(Pk,m,α) where α = Fk(m) and Pk,m,α is the program such that:
Pk,m,α(m

∗, σ):
for some OWF f

if m = m∗:
if f(σ) = f(α) return 1
otherwise return 0

else proceed as Pk from before
if f(σ) = f(Fk(m

∗)) return 1
otherwise return 0

Note that this program does not change its output for any value. This is indistinguishable from
H0 by indistinguishability obfuscation.

H2: Adjust α so that it is a randomly sampled value. The indistinguishability of H2 and H1 follows
from the security of PRG.
H3: Adjust the program such that instead of α it relies on some β that is compared instead f(α)
in the third line.

Any adversary that can break H3 non-negligibly can break the OWF f with at the value β.

10.6 Public Key Encryption via Indistinguishable Obfuscation

A public key encryption scheme can be constructed via indistinguishable obfuscation. A public key
encryption scheme is made up of (Gen,Enc,Dec). The PRG used below is a length doubling PRG.

(pk, sk)← Gen(1k)
sk = key of puncturable function and the seed of the PRF Fk

pk = iO(Pk) where Pk is the program:
Pk(m, r):

t = PRG(r)
Output c = (t, Fk(t)⊕m)

Enc(pk,m): Sample r and output (pk(m, r)).

Dec(sk = k, c = (c1, c2)): Output Fk(sk, c1)⊕ c2.

Our security requirements will be that the adversary does wins the following game negligibly:

95

Challenger Adversary
(pk, sk) = Gen(1k) and
Randomly sample b from {0, 1} and
c∗ = Enc(pk, b) and

Pk,c
∗

→
b∗←
Adversary wins game if b = b∗

To prove the security of this system, we use a hybrid argument. H0 is as above.

H1: Adjust pk so that pk = iO(Pk,α,t) where α = Fk(t) and Pk,α,t is the program such that:
Pk,α,t(m, r):

t∗ = PRG(r)
if t∗ = t, output (t∗, α⊕m)
else output (t∗, Fk(t

∗)⊕m)

Note that this program does not change its output for any value. This is indistinguishable from
H0 by indistinguishability obfuscation.

H2: Adjust α so that it is a randomly sampled value.
H3: Adjust the program such that t∗ is randomly sampled and is not in the range of the PRG.

Any adversary that can win H3 can guess a random value non-negligibly.

10.7 Indistinguishable Obfuscation Construction from NC1 iO

A construction of indistinguishable obfuscation from iO for circuits in NC1 is as follows:

Let Pk,C(x) be the circuit that outputs the garbled circuit ˜UC(C, x) with randomness Fk(x) which
is a punctured (at k) PRF in NC1

Note that UC(C, x) outputs C(x) (UC is the “universal” circuit)
iO(C)→ sample k randomly from {0, 1}|x| and output iONC1(Pk,C) padded to a length l

As before, we use a hybrid argument to show the security for iO.
H0: iO(C) = iONC1(Pk,C) as above.
Hfinal = H2n : iO(pk, c2)
H1 · · ·Hi: Create a program Qk,c1,c2,i(x) and obfuscate it.
Qk,c1,c2,i(x):

Sample k randomly
if x ≥ i, return Pk,c1(x)
else , return Pk,c2(x)

Note that Hi and Hi+1 are indistinguishable for any value other than x = i.
Hi,1 (between Hi and Hi+1): Create a program Qk,c1,c2,i,α(x), where α = Qk,c1,c2,i(x) and obfuscate
it.
Qk,c1,c2,i,α(x):

Sample k randomly

96

if x = i, return α
else , return Qk,c1,c2,i(x)

Hi,2: Replace α with a random β using fresh coins
Hi,3: Create the c2(x) value using fresh coins
Hi,4: Create the c2(x) value using Fk(x)
Hi,5: Finish the migration to Qk,c1,c2,i+1

Note that at Hfinal, the circuit being obfuscated is completely changed from c1 to c2.

97

98

Bibliography

[1] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocess-
ing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages 415–447, Tel
Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

99

