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Preface

Cryptography enables many paradoxical objects, such as public key
encryption, verifiable electronic signatures, zero-knowledge pro-
tocols, and fully homomorphic encryption. The two main steps in
developing such seemingly impossible primitives are (i) defining the
desired security properties formally and (ii) obtaining a construction
satisfying the security property provably. In modern cryptography,
the second step typically assumes (unproven) computational assump-
tions, which are conjectured to be computationally intractable. In this
course, we will define several cryptographic primitives and argue
their security based on well-studied computational hardness assump-
tions. However, we will largely ignore the mathematics underlying
the assumed computational intractability assumptions.
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1
Mathematical Background

In modern cryptography, (1) we typically assume that our attackers
cannot run in unreasonably large amounts of time, and (2) we allow
security to be broken with a very small, but non-zero, probability.

Without these assumptions, we must work in the realm of information-
theoretic cryptography, which is often unachievable or impracti-
cal for many applications. For example, the one-time pad 1 – an 1 For a message m ∈ {0, 1}n and a

random key k ∈ {0, 1}n, the encryption
of m is c = m ⊕ k. The decryption is
m = c⊕ k.

information-theoretically secure cipher – is not very useful because it
requires very large keys.

In this chapter, we define items (1) and (2) more formally. We
require our adversaries to run in polynomial time, which captures
the idea that their runtime is not unreasonably large (sections 1.1).
We also allow security to be broken with negligible – very small –
probability (section 1.2).

1.1 Probabilistic Polynomial Time

A probabilistic Turing Machine is a generic computer that is allowed
to make random choices during its execution. A probabilistic polyno-
mial time Turing Machine is one which halts in time polynomial in its
input length. More formally:

Definition 1.1 (Probabilistic Polynomial Time). A probabilistic Tur-
ing Machine M is said to be PPT (a Probabilistic Polynomial Time Turing
Machine) if ∃c ∈ Z+ such that ∀x ∈ {0, 1}∗, M(x) halts in |x|c steps.

A non-uniform PPT Turing Machine is a collection of machines one
for each input length, as opposed to a single machine that must work
for all input lengths.

Definition 1.2 (Non-uniform PPT). A non-uniform PPT machine is a se-
quence of Turing Machines {M1, M2, · · · } such that ∃c ∈ Z+ such that
∀x ∈ {0, 1}∗, M|x|(x) halts in |x|c steps.
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1.2 Noticeable and Negligible Functions

Noticeable and negligible functions are used to characterize the
“largeness” or “smallness” of a function describing the probability of
some event. Intuitively, a noticeable function is required to be larger
than some inverse-polynomially function in the input parameter.
On the other hand, a negligible function must be smaller than any
inverse-polynomial function of the input parameter. More formally:

Definition 1.3 (Noticeable Function). A function µ(·) : Z+ → [0, 1] is
noticeable iff ∃c ∈ Z+, n0 ∈ Z+ such that ∀n ≥ n0, µ(n) > n−c.

Example. Observe that µ(n) = n−3 is a noticeable function. (Notice
that the above definition is satisfied for c = 4 and n0 = 1.)

Definition 1.4 (Negligible Function). A function µ(·) : Z+ → [0, 1] is
negligible iff ∀c ∈ Z+ ∃n0 ∈ Z+ such that ∀n ≥ n0, µ(n) < n−c.

Example. µ(n) = 2−n is an example of a negligible function. This can
be observed as follows. Consider an arbitrary c ∈ Z+ and set n0 = c2.
Now, observe that for all n ≥ n0, we have that n

log2 n ≥
n0

log2 n0
> n0√

n0
=

√
n0 = c. This allows us to conclude that

µ(n) = 2−n = n−
n

log2 n < n−c.

Thus, we have proved that for any c ∈ Z+, there exists n0 ∈ Z+

such that for any n ≥ n0, µ(n) < n−c.

Gap between Noticeable and Negligible Functions. At first thought it
might seem that a function that is not negligible (or, a non-negligible
function) must be a noticeable. This is not true!2 Negating the defini- 2 Mihir Bellare. A note on negligi-

ble functions. Journal of Cryptology,
15(4):271–284, September 2002

tion of a negligible function, we obtain that a non-negligible function
µ(·) is such that ∃c ∈ Z+ such that ∀n0 ∈ Z+, ∃n ≥ n0 such
that µ(n) > n−c. Note that this requirement is satisfied as long as
µ(n) > n−c for infinitely many choices of n ∈ Z+. However, a notice-
able function requires this condition to be true for every n ≥ n0.

Below we give example of a function µ(·) that is neither negligible
nor noticeable.

µ(n) =
{ 2−n : x mod 2 = 0

n−3 : x mod 2 ̸= 0

This function is obtained by interleaving negligible and noticeable
functions. It cannot be negligible (resp., noticeable) because it is
greater (resp., less) than an inverse-polynomially function for in-
finitely many input choices.
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Properties of Negligible Functions. Sum and product of two negligible
functions is still a negligible function. We argue this for the sum
function below and defer the problem for products to Exercise 2.2.
These properties together imply that any polynomial function of a
negligible function is still negligible.

Exercise 1.1. If µ(n) and ν(n) are negligible functions from domain Z+ to
range [0, 1] then prove that the following functions are also negligible:

1. ψ1(n) = 1
2 · (µ(n) + ν(n))

2. ψ2(n) = min{µ(n) + ν(n), 1}

3. ψ3(n) = µ(n) · ν(n)

4. ψ4(n) = poly(µ(n)), where poly(·) is an unspecified polynomial func-
tion. (Assume that the output is also clamped to [0, 1] to satisfy the
definition)

function.

Proof.

1. We need to show that for any c ∈ Z+, we can find n0 such that
∀n ≥ n0, ψ1(n) ≤ n−c. Our argument proceeds as follows. Given
the fact that µ and ν are negligible we can conclude that there exist
n1 and n2 such that ∀n ≥ n1, µ(n) < n−c and ∀n ≥ n2, g(n) < n−c.
Combining the above two facts and setting n0 = max(n1, n2) we
have that for every n ≥ n0,

ψ1(n) =
1
2
· (µ(n) + ν(n)) <

1
2
· (n−c + n−c) = n−c

Thus, ψ1(n) ≤ n−c and hence is negligible.

2. We need to show that for any c ∈ Z+, we can find n0 such that
∀n ≥ n0, ψ2(n) ≤ n−c. Given the fact that µ and ν are negligible,
there exist n1 and n2 such that ∀n ≥ n1, µ(n) ≤ n−c−1 and ∀n ≥
n2, g(n) ≤ n−c−1. Setting n0 = max(n1, n2, 3) we have that for
every n ≥ n0,

ψ2(n) = min{µ(n) + ν(n), 1} < n−c−1 + n−c−1 < n−c

1.3 Computationally Hard Problems

We will next provide certain number theoretical problems that are
conjectured to be computationally intractable. We will use the conjec-
tured hardness of these problems in subsequent chapters to o provide
concrete instantiations.
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1.3.1 The Discrete-Log Family of Problem

Consider a group G of prime order. For example, consider the group
Z∗p where p is a large prime. Let g be a generator of this group G.
In this group, given gx for a random x ∈ {1, . . . p− 1} consider the
problem of finding x. This problem, referred to as the discrete-log
problem, is believed to be computationally hard.

The asymptotic definition of the discrete-log problem needs to
consider an infinite family of groups or what we will a group ensem-
ble.

Group Ensemble. A group ensemble is a set of finite cyclic groups
G = {Gn}n∈N. For the group Gn, we assume that given two group
elements in Gn, their sum can be computed in polynomial in n time.
Additionally, we assume that given n the generator g of Gn can be
computed in polynomial time.

Definition 1.5 (Discrete-Log Assumption). We say that the discrete-
log assumption holds for the group ensemble G = {Gn}n∈N, if for every
non-uniform PPT algorithm A we have that

µA(n) := Pr
x←|Gn |

[A(g, gx) = x]

is a negligible function.

The Diffie-Hellman Problems. In addition to the discrete-log assump-
tion, we also define the Computational Diffie-Hellman Assumption
and the Decisional Diffie-Hellman Assumption.

Definition 1.6 (Computational Diffie-Hellman (CDH) Assumption).
We say that the Computational Diffie-Hellman Assumption holds for the
group ensemble G = {Gn}n∈N, if for every non-uniform PPT algorithm A
we have that

µA(n) := Pr
x,y←|Gn |

[A(g, gx, gy) = gxy]

is a negligible function.

Definition 1.7 (Decisional Diffie-Hellman (DDH) Assumption). We
say that the Computational Diffie-Hellman Assumption holds for the group
ensemble G = {Gn}n∈N, if for every non-uniform PPT algorithm A we
have that

µA(n) =| Pr
x,y←|Gn |

[A(g, gx, gy, gxy) = 1]− Pr
x,y,z←|Gn |

[A(g, gx, gy, gz) = 1] |

is a negligible function.
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It is not hard to observe that the discrete-log assumption is the
weakest of the three assumptions above. In fact, it is not difficult
to show that the Discrete-Log Assumption for G implies the CDH
and the DDH Assumptions for G. Additionally, we leave it as an
exercise to show that the CDH Assumption for G implies the DDH
Assumptions for G.

Examples of Groups where these assumptions hold. Now we provide
some examples of group where these assumptions hold.

1. Consider the group Z∗p for a prime p.3 For this group the CDH 3 Since the number of primes is infinite
we can define an infinite family of such
groups. For the sake of simplicity, here
we only consider a single group.

Assumption is conjectured to be true. However, using the Legen-
dre symbol,4 the DDH Assumption in this group can be shown to

4 Let p be an odd prime number. An
integer a is said to be a quadratic residue
modulo p if it is congruent to a perfect
square modulo p and is said to be a
quadratic non-residue modulo p other-
wise. The Legendre symbol is a function
of a and p defined as

(
a
p

)
=


1 if a is quadration residue mod p and a ̸≡ 0 mod p
−1 if a is quadration non-residue mod p
0 if a ≡ 0 mod p

Legendre symbol can be efficiently

computed as
(

a
p

)
= a

p−1
2 mod p.

be false. Can you show how?5

5 This is because given gx , gy one can
easily compute deduce the Legendre

symbol of gxy. Observe that if
(

g
p

)
=

−1 then we have that
(

gxy

p

)
= 1 if and

only if
(

gx

p

)
= 1 or

(
gy

p

)
= 1. Using

this fact, we can construct an adversary
that breaks the DDH problem with
a non-negligible (in fact, noticeable)
probability.

2. Let p = 2q + 1 where both p and q are prime.6 Next, let Q be the

6 By Dirichet’s Theorem on primes in
arithmetic progression, we have that
there are infinite choices of primes
(p, q) for which p = 2q + 1. This allows
us to generalize this group to a group
ensemble.

order-q subgroup of quadratic residues in Z∗p. For this group, the
DDH assumption is believed to hold.

3. Let N = pq where p, q, p−1
2 and q−1

2 are primes. Let QRN be the
cyclic subgroup of qudratic resides of order ϕ(N) = (p− 1)(q− 1).
For this group QRN , the DDH assumption is also believed to hold.

Is DDH strictly stronger than Discrete-Log? In the example cases
above, where DDH is known believed to be hard, the best known
algorithms for DDH are no better than the best known algorithms for
the discrete-log problem. Whether the DDH assumption is strictly
stronger than the discrete-log assumption is an open problem.

1.3.2 CDH in QRN implies Factoring

In this section, we will show that the CDH assumption in QRN im-
plies the factoring assumption.

Lemma 1.1. Given an algorithm A that breaks the CDH assumption in
QRN , we construct an non-uniform PPT adversary B that on input N
outputs its prime factors p and q.

Proof. Given that A is an algorithm that solves the CDH problem in
QRN with a non-negligible probability, we construct an algorithm B
that can factor N. Specifically, B on input N proceeds as follows:

1. Sample v ← QRN (such a v can be obtained by sampling a ran-
dom value in Z∗N and squaring it) and compute g := v2 mod N.

2. Sample x, y← [N].7 7 Note that sampling x, y uniformly
from [N] is statistically close to sam-
pling x, y uniformly from [ϕ(N)].3. Let u := A(g, gx · v, gy · v)8 and compute w := u

gxy ·vx+y .
8 Note that gx · v where x ← [N] is
statistically close to gx where x ← [N].
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4. If w2 = v2 mod N and u ̸= ±v, then compute the factors of N as
gcd(N, u + v) and N/gcd(N, u + v). Otherwise, output ⊥.

Observe that if A solves the CDH problem then the returned values
u = g(x+2−1)(y+2−1) = v2xy+x+y+2−1

. Consequently, the computed
value w = v2−1

. Furthermore, with probability 1
2 we have that w ̸= v.

In this case, B can factor N.



2
One-Way Functions

Cryptographers often attempt to base cryptographic results on con-
jectured computational assumptions to leverage reduced adversarial
capabilities. Furthermore, the security of these constructions is no
better than the assumptions they are based on.

Cryptographers seldom sleep well.1 1 Quote by Silvio Micali in personal
communication with Joe Kilian.

Thus, basing cryptographic tasks on the minimal necessary assump-
tions is a key tenet in cryptography. Towards this goal, rather can
making assumptions about specific computational problem in num-
ber theory, cryptographers often consider abstract primitives. The
existence of these abstract primitives can then be based on one or
more computational problems in number theory.

The weakest abstract primitive cryptographers consider is one-way
functions. Virtually, every cryptographic goal of interest is known
to imply the existence of one-way functions. In other words, most
cryptographic tasks would be impossible if the existence of one-way
functions was ruled out. On the flip side, the realizing cryptographic
tasks from just one-way functions would be ideal.

2.1 Definition

A one-way function f : {0, 1}n → {0, 1}m is a function that is easy
to compute but hard to invert. This intuitive notion is trickier to
formalize than it might appear on first thought.
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Definition 2.1 (One-Way Functions). A function f : {0, 1}∗ → {0, 1}∗
is said to be one-way function if:

- Easy to Compute: ∃ a (deterministic) polynomial time machine M such
that ∀x ∈ {0, 1}∗ we have that

M(x) = f (x)

- Hard to Invert: ∀ non-uniform PPT adversary A we have that

µA, f (n) = Pr
x $←{0,1}n

[A(1n, f (x)) ∈ f−1( f (x))] (2.1)

is a negligible function, x $← {0, 1}n denotes that x is drawn uniformly
at random from the set {0, 1}n, f−1( f (x)) = {x′ | f (x) = f (x′)}, and
the probability is over the random choices of x and the random coins of
A2.

{0, 1}n {0, 1}m

Easy to Compute

Hard to Invert

Figure 2.1: Visulizing One-way Funca-
tions

2 Typically, the probability is only
taken over the random choices of x,
since we can fix the random coins of
the adversary A that maximize its
advantage.

We note that the function is not necessarily one-to-one. In other
words, it is possible that f (x) = f (x′) for x ̸= x′ – and the adversary
is allowed to output any such x′.

The above definition is rather delicate. We next describe problems
in the slight variants of this definition that are insecure.

1. What if we require that Pr
x $←{0,1}n

[A(1n, f (x)) ∈ f−1( f (x))] = 0

instead of being negligible?

This condition is false for every function f . An adversary A that
outputs an arbitrarily fixed value x0 succeeds with probability at
least 1/2n, as x0 = x with at least the same probability.

2. What if we drop the input 1n to A in Equation 2.1?

Consider the function f (x) = |x|. In this case, we have that m =

log2 n, or n = 2m. Intuitively, f should not be considered a one-
way function, because it is easy to invert f . Namely, given a value
y any x such that |x| = y is such that x ∈ f−1(y). However,
according to this definition the adversary gets an m bit string as
input, and hence is restricted to running in time polynomial in m.
Since each possible x is of size n = 2m, the adversary doesn’t even
have enough time to write down the answer! Thus, according to
the flawed definition above, f would be a one-way function.

Providing the attacker with 1n (n repetitions of the 1 bit) as addi-
tional input avoids this issue. In particular, it allows the attacker to
run in time polynomial in m and n.

Candidate One-way Functions. It is not known whether one-way
functions exist. In fact, the existence of one-way functions would
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imply that P ̸= NP (see Exercise 2.3).
However, there are candidates of functions that could be one-way

functions, based on the difficulty of certain computational problems.
(See Section 1.3)

Let’s suppose that the discrete-log assumption hold for group
ensemble G = {Gn} then we have that the function family { fn}
where fn : {1, . . . |Gn|} → Gn is a one-way function family. In
particular, fn(x) = gx where g is the generator of the group Gn. The
proof that { fn} is one-way based on the Discrete-Log Assumption
(see Definition 1.5) is left as as an exercise.

2.2 Robustness and Brittleness of One-way Functions

What operations can we perform on one-way functions and still have
a one-way function? In this section, we explore the robustness and
brittleness of one-way functions and some operations that are safe or
unsafe to perform on them.

2.2.1 Robustness

Consider having a one-way function f . Can we use this function f
in order to make a more structured one-way function g such that
g(x0) = y0 for some constants x0, y0, or would this make the function
no longer be one-way?

Intuitively, the answer is yes - we can specifically set g(x0) = y0,
and otherwise have g(x) = f (x). In this case, the adversary gains
the knowledge of how to invert y0, but that will only happen with
negligible probability, and so the function is still one-way.

In fact, this can be done for an exponential number of x0, y0 pairs.
To illustrate that, consider the following function:

g(x1∥x2) =

{
x1∥x2 : x1 = 0n/2

f (x1∥x2) : otherwise

However, this raises an apparent contradiction - according to this
theorem, given a one-way function f , we could keep fixing each of
its values to 0, and it would continue to be a one-way function. If we
kept doing this, we would eventually end up with a function which
outputs 0 for all of the possible values of x. How could this still be
one-way?

The resolution of this apparent paradox is by noticing that a one-
way function is only required to be one-way in the limit where n
grows very large. So, no matter how many times we fix the values
of f to be 0, we are still only setting a finite number of x values to 0.
However, this will still satisfy the definition of a one-way function
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- it is just that we will have to use larger and larger values of n0 in
order to prove that the probability of breaking the one-way function
is negligible.

2.2.2 Brittleness

Example: OWFs do not always compose securely. Given a one-way
function f : {0, 1}n → {0, 1}n, is the function f 2(x) = f ( f (x)) also
a one-way function? Intuitively, it seems that if it is hard to invert
f (x), then it would be just as hard to invert f ( f (x)). However, this
intuition is incorrect and highlights the delicacy when working with
cryptographic assumptions and primitives. In particular, assuming
one-way functions exists we describe a one-way function f : {0, 1}n ×
{0, 1}n → {0, 1}2n such that f 2 can be efficiently inverted. Let g :
{0, 1}n → {0, 1}n be a one-way function then we set f as follows:

f (x1, x2) = 0n∥g(x1)

Two observations follow:

1. f 2 is not one-way. This follows from the fact that for all inputs
x1, x2 we have that f 2(x1, x2) = 02n. This function is clearly not
one-way!

2. f is one-way. This can be argued as follows. Assume that there ex-
ists an adversary A such that µA, f (n) = Pr

x $←{0,1}n
[A(12n, f (x)) ∈

f−1( f (x))] is non-negligible. Using such an A we will describe a
construction of adversary B such that µB,g(n) = Pr

x $←{0,1}n
[B(1n, g(x)) ∈

g−1(g(x))] is also non-negligible. This would be a contradiction
thus proving our claim.

Description of B: B on input y ∈ {0, 1}n outputs the n lower-order
bits of A(12n, 0n∥y).
Observe that if A successfully inverts f then we have that B suc-
cessfully inverts g. More formally, we have that:

µB,g(n) = Pr
x $←{0,1}n

[
A(12n, 0n||g(x)) ∈ {0, 1}n||g−1(g(x))

]
.

But

µA, f (2n) = Pr
x1,x2

$←{0,1}2n
[A(12n, f (x1, x2)) ∈ f−1( f (x̃))]

= Pr
x1

$←{0,1}n
[A(12n, 0n||g(x2)) ∈ {0, 1}n||g−1(g(x2))]

=µB,g(n).

Hence, we have that µB,g(n) = µA, f (2n) which is non-negligible as
long as µA, f (2n) is non-negligible.
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Example: Dropping a bit is not always secure. Below is another ex-
ample of a transformation that does not work. Given any one-way
function g, let g′(x) be g(x) with the first bit omitted.

Claim 2.1. g′ is not necessarily one-way. In other words, there exists a
OWF function g for which g′ is not one-way.

Proof. We must (1) construct a function g, (2) show that g is one-way,
and (3) show that g′ is not one-way.
Step 1: Construct a OWF g. To do this, we first want to come up
with a (contrived) function g and prove that it is one-way. Let us
assume that there exists a one-way function h : {0, 1}n → {0, 1}n. We
define the function g : {0, 1}2n → {0, 1}2n as follows:

g(x∥y) =

0n∥y if x = 0n

1∥0n−1∥g(y) otherwise

Step 2: Prove that g is one-way.

Claim 2.2. If h is a one-way function, then so is g.

Proof. Assume for the sake of contradiction that g is not one-way.
Then there exists a polynomial time adversary A and a non-negligible
function µ(·) such that:

Pr
x,y
[A(1n, g(x∥y)) ∈ g−1(g(x∥y))] = µ(n)

We will use such an adversary A to invert h with some non-negligible
probability. This contradicts the one-wayness of h and thus our as-
sumption that g is not one-way function is false.

Let us now construct an B that uses A and inverts h. B is given
1n, h(y) for a randomly chosen y and its goal is to output y′ ∈
h−1(h(y)) with some non-negligible probability. B works as follows:

1. It samples x ← {0, 1}n randomly.

2. If x = 0n, it samples a random y′ ← {0, 1}n and outputs it.

3. Otherwise, it runs A(10n−1∥h(y)) and obtains x′∥y′. It outputs y′.

Let us first analyze the running time of B. The first two steps are
clearly polynomial (in n) time. In the third step, B runs A and uses
its output. Note that the running time of since A runs in polynomial
(in n) time, this step also takes polynomial (in n) time. Thus, the
overall running time of B is polynomial (in n).

Let us now calculate the probability that B outputs the correct
inverse. If x = 0n, the probability that y′ is the correct inverse is
at least 1

2n (because it guesses y′ randomly and probability that a
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random y′ is the correct inverse is ≥ 1/2n). On the other hand, if
x ̸= 0n, then the probability that B outputs the correct inverse is µ(n).
Thus,

Pr[B(1n, h(y)) ∈ h−1(h(y))] ≥ Pr[x = 0n](
1
2n ) + Pr[x ̸= 0n]µ(n)

=
1

22n + (1− 1
2n )µ(n)

≥ µ(n)− (
1
2n −

1
22n )

Since µ(n) is a non-negligible function and ( 1
2n − 1

22n ) is a negligi-
ble function, their difference is non-negligible.3 This contradicts the 3 Exercise: Prove that if α(·) is a non-

negligible function and β(·) is a neg-
ligible function, then (α − β)(·) is a
non-negligible function.

one-wayness of h.

Step 3: Prove that g′ is not one-way. We construct the new function
g′ : {0, 1}2n → {0, 1}2n−1 by dropping the first bit of g. That is,

g′(x∥y) =

0n−1∥y if x = 0n

0n−1∥g(y) otherwise

We now want to prove that g′ is not one-way. That is, we want
to design an adversary C such that given 12n and g′(x∥y) for a ran-
domly chosen x, y, it outputs an element in the set g−1(g(x∥y). The
description of C is as follows:

• On input 12n and g′(x∥y), the adversary C parses g′(x∥y) as
0n−1∥y.

• It outputs 0n∥y as the inverse.

Notice that g′(0n∥y) = 0n−1∥y. Thus, C succeeds with probability 1
and this breaks the one-wayness of g′.

2.3 Hardness Amplification

In this section, we show that even a very weak form of one-way func-
tions suffices from constructing one-way functions as defined previ-
ously. For this section, we refer to this previously defined notion as
strong one-way functions.
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Definition 2.2 (Weak One-Way Functions). A function f : {0, 1}n →
{0, 1}m is said to be a weak one-way function if:

- f is computable by a polynomial time machine, and

- There exists a noticeable function α f (·) such that ∀ non-uniform PPT
adversaries A we have that

µA, f (n) = Pr
x $←{0,1}n

[A(1n, f (x)) ∈ f−1( f (x))] ≤ 1− α f (n).

Theorem 2.1. If there exists a weak one-way function, then there exists a
(strong) one-way function.

Proof. We prove the above theorem constructively. Suppose f :
{0, 1}n → {0, 1}m is a weak one-way function, then we prove that
the function g : {0, 1}nq → {0, 1}mq for q = ⌈ 2n

α f (n)
⌉ where

g(x1, x2, · · · , xq) = f (x1)|| f (x2)|| · · · || f (xq),

is a strong one-way function. Let us discuss the intuition. A weak
one-way function is "strong" in a small part of its domain. For this
construction to result in a strong one-way function, we need just
one of the q instantiations to be in the part of the domain where our
weak one-way function is strong. If we pick a large enough q, this is
guaranteed to happen.

Assume for the sake of contradiction that there exists an adversary
B such that µB,g(nq) = Pr

x $←{0,1}nq [B(1
nq, g(x)) ∈ g−1(g(x))] is non-

negligible. Then we use B to construct A (see Figure 2.2) that breaks
f , namely µA, f (n) = Pr

x $←{0,1}n
[A(1n, f (x)) ∈ f−1( f (x))] > 1− α f (n)

for sufficiently large n.

1. i $← [q].

2. x1, · · · , xi−1, xi , · · · , xq
$← {0, 1}n.

3. Set yj = f (xj) for each j ∈ [q]\{i}
and yi = y.

4. (x′1, x′2, · · · , x′q) :=
B( f (x1), f (x2), · · · , f (xq)).

5. f (x′i) = y then output x′i else ⊥.

Figure 2.2: Construction of A(1n, y)

Note that: (1) A(1n, y) iterates at most T = 4n2

α f (n)µB,g(nq) times each

call is polynomial time. (2) µB,g(nq) is a non-negligible function. This
implies that for infinite choices of n this value is greater than some
noticeable function. Together these two facts imply that for infinite
choices of n the running time of A is bounded by a polynomial func-
tion in n.

It remains to show that Pr
x $←{0,1}n

[A(1n, f (x)) = ⊥] < α f (n) for

arbitrarily large n. A natural way to argue this is by showing that at
least one execution of B should suffice for inverting f (x). However,
the technical challenge in proving this formally is that these calls to
B aren’t independent. Below we formalize this argument even when
these calls aren’t independent.

Lemma 2.1. Let A be any an efficient algo-
rithm such that Prx,r [A(x, r) = 1] ≥ ϵ.
Additionally, let G = {x |≥ Prr [A(x, r) =
1] ≥ ϵ

2 }. Then, we have Prx [x ∈ G] ≥ ϵ
2 .

Proof. The proof of this lemma follows
by a very simple counting argument.
Let’s start by assuming that Prx [x ∈
G] < ϵ

2 . Next, observe that

Pr
x,r
[A(x, r) = 1]

= Pr
x
[x ∈ G] · Pr

x,r
[A(x, r) = 1 | x ∈ G]

+ Pr
x
[x ̸∈ G] · Pr

x,r
[A(x, r) = 1 | x ̸∈ G]

<
ϵ

2
· 1 + 1 · ϵ

2
< ϵ,

which is a contradiction.

Define the set S of “bad” x’s, which are hard to invert:

S :=

{
x

∣∣∣∣∣Pr
B
[A inverts f (x) in a single iteration] ≤

α f (n)µB,g(nq)
4n

}
.
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We start by proving that the size of S is small. More formally,

Pr
x $←{0,1}n

[x ∈ S] ≤
α f (n)

2
.

Assume, for the sake of contradiction, that Pr
x $←{0,1}n

[x ∈ S] >
α f (n)

2 . Lemma 2.2. Let A be any an efficient
algorithm such that Prx,r [A(x1, . . . xn, r) =
1] ≥ ϵ. Additionally, let G = {x |≥
Prx1 ,...xn ,r [A(x, r) = 1 | ∃i, x = xi ] ≥ ϵ

2 }.
Then, we have Prx [x ∈ G] ≥ ϵ

2 .

Proof. The proof of this lemma follows
by a very simple counting argument.
Let’s start by assuming that Prx [x ∈
G] < ϵ

2 . Next, observe that

Pr
x,r
[A(x, r) = 1]

= Pr
x
[x ∈ G] · Pr

x,r
[A(x, r) = 1 | x ∈ G]

+ Pr
x
[x ̸∈ G] · Pr

x,r
[A(x, r) = 1 | x ̸∈ G]

<
ϵ

2
· 1 + 1 · ϵ

2
< ϵ,

which is a contradiction.

Then we have that:

µB,g(nq) = Pr
(x1,··· ,xq)

$←{0,1}nq
[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq))]

= Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ ∀i : xi /∈ S]

+ Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ ∃i : xi ∈ S]

≤ Pr
x1,··· ,xq

[∀i : xi /∈ S] +
q

∑
i=1

Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ xi ∈ S]

≤
(

1−
α f (n)

2

)q

+ q · Pr
x1,··· ,xq ,i

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ xi ∈ S]

=

(
1−

α f (n)
2

) 2n
α f (n)

+ q · Pr
x $←{0,1}n ,B

[A inverts f (x) in a single iteration∧ x ∈ S]

≤e−n + q · Pr
x
[x ∈ S] · Pr[A inverts f (x) in a single iteration | x ∈ S]

≤e−n +
2n

α f (n)
· 1 ·

µB,g(nq) · α f (n)
4n

≤e−n +
µB,g(nq)

2
.

Hence µB,g(nq) ≤ 2e−n, contradicting with the fact that µB,g is non-
negligible. Then we have

Pr
x $←{0,1}n

[A(1n, f (x)) = ⊥]

=Pr
x
[x ∈ S] + Pr

x
[x /∈ S] · Pr[B fails to invert f (x) in every iteration|x /∈ S]

≤
α f (n)

2
+ (Pr[B fails to invert f (x) a single iteration|x /∈ S])T

≤
α f (n)

2
+

(
1−

µA,g(nq) · α f (n)
4n

)T

≤
α f (n)

2
+ e−n ≤ α f (n)

for sufficiently large n. This concludes the proof.

2.4 Levin’s One-Way Function

In this section, we discuss Levin’s one-way function, which is an
explicit construction of a one-way function that is secure as long as a
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one-way function exists. This is interesting because unlike a typical
cryptographic primitive that relies on a specific hardness assumption
(which may or may not hold in the future), Levin’s one-way function
is future-proof in the sense that it will be secure as long as atleast one
hardness assumption holds (which we may or may not discover).

The high-level intuition behind Levin’s construction is as follows:
since we assume one-way functions exist, there exists a uniform ma-
chine M̃ such that |M̃| is a constant and M̃(x) is hard to invert for
a random input x. Now, consider a function h that parses the first
log(n) bits of its n-bit input as the code of a machine M and the
remaining bits as the input to M. For a large enough n that is expo-
nential in |M̃|, note that we will hit the code of M̃ with noticeable
probability in n, and for those instances, h will be hard to invert. It
is easy to see that this gives us a weak one-way function which has a
noticeable probability of being hard to invert, and we can amplify the
hardness of this weak one-way function to get an explicit construc-
tion of a one-way function.

Theorem 2.2. If there exists a one-way function, then there exists an ex-
plicit function f that is one-way (constructively).

Before we look at the construction and the proof in detail, we first
prove a lemma that will be useful in the proof. In particular, we need
a bound on the running time of the one-way function M̃ so that we
can upper bound the execution time of h, since there could be inputs
to g that do not terminate in polynomial time. To this end, we prove
the following lemma which shows that if a one-way function exists,
then there is also a one-way function that runs in time n2, and thus,
we can bound h to n2 steps.

Lemma 2.3. If there exists a one-way function computable in time nc for a
constant c, then there exists a one-way function computable in time n2.

Proof. Let f : {0, 1}n → {0, 1}n be a one-way function computable in
time nc. Construct g : {0, 1}n+nc → {0, 1}n+nc

as follows:

g(x, y) = f (x)||y

where x ∈ {0, 1}n, y ∈ {0, 1}nc
. g(x, y) takes time 2nc, which is linear

in the input length.
We next show that g(·) is one-way. Assume for the purpose of

contradiction that there exists an adversary A such that µA,g(n +

nc) = Pr
(x,y) $←{0,1}n+nc [A(1n+nc

, g(x, y)) ∈ g−1(g(x, y))] is non-

negligible. Then we use A to construct B such that µB, f (n) =

Pr
x $←{0,1}n

[B(1n, f (x)) ∈ f−1( f (x))] is also non-negligible.
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B on input z ∈ {0, 1}n, samples y $← {0, 1}nc
, and outputs the n

higher-order bits of A(1n+nc
, z||y). Then we have

µB,g(n) = Pr
x $←{0,1}n ,y $←{0,1}nc

[
A(1n+nc

, f (x)||y) ∈ f−1( f (x))||{0, 1}nc
]

≥ Pr
x,y

[
A(1n+nc

, g(x, y)) ∈ f−1( f (x))||y
]

= Pr
x,y

[
A(1n+nc

, g(x, y)) ∈ g−1(g(x, y))
]

is non-negligible.

Now, we provide the explicit construction of h and prove that it
is a weak one-way function. Since h is an (explicit) weak one-way
function, we can construct an (explicit) one-way function from h as
we discussed in Section 2.3, and this would prove Theorem 2.2.

Proof of Theorem 2.2. h : {0, 1}n → {0, 1}n is defined as follows:

h(M, x) =

{
M||M(x) if M(x) takes no more than |x|2 steps
M||0 otherwise

where |M| = log n, |x| = n− log n (interpreting M as the code of a
machine and x as its input).

It remains to show that if one-way functions exist, then h is a
weak one-way function, with αh(n) = 1

n2 . Assume for the pur-
pose of contradiction that there exists an adversary A such that
µA,h(n) = Pr

(M,x) $←{0,1}n
[A(1n, h(M, x)) ∈ h−1(h(M, x))] ≥ 1− 1

n2

for all sufficiently large n. By the existence of one-way functions
and Lemma 2.3, there exists a one-way function M̃ that can be com-
puted in time n2. Let M̃ be the uniform machine that computes this
one-way function. We will consider values n such that n > 2|M̃|. In
other words for these choices of n, M̃ can be described using log n
bits. We construct B to invert M̃: on input y outputs the (n− log n)
lower-order bits of A(1n, M̃||y). Then

µB,M̃(n− log n) = Pr
x $←{0,1}n−log n

[
A(1n, M̃||M̃(x)) ∈ {0, 1}log n||M̃−1(M̃((x))

]
≥ Pr

x $←{0,1}n−log n

[
A(1n, M̃||M̃(x)) ∈ M̃||M̃−1(M̃((x))

]
.

Observe that for sufficiently large n it holds that

1− 1
n2 ≤µA,h(n)

= Pr
(M,x) $←{0,1}n

[
A(1n, h(M, x)) ∈ h−1(h(M, x))

]
≤Pr

M
[M = M̃] · Pr

x

[
A(1n, M̃||M̃(x)) ∈ M̃||M̃−1(M̃((x))

]
+ Pr

M
[M ̸= M̃]

≤ 1
n
· µB,M̃(n− log n) +

n− 1
n

.
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Hence µB,M̃(n − log n) ≥ n−1
n for sufficiently large n which is a

contradiction.

2.5 Hardness Concentrate Bit

We start by asking the following question: Is it possible to concen-
trate the strength of a one-way function into one bit? In particular,
given a one-way function f , does there exist one bit that can be com-
puted efficiently from the input x, but is hard to compute given f (x)?

Definition 2.3 (Hard Concentrate Bit). Let f : {0, 1}n → {0, 1}n be a
one-way function. B : {0, 1}n → {0, 1} is a hard concentrate bit of f if:

- B is computable by a polynomial time machine, and

- ∀ non-uniform PPT adversaries A we have that

Pr
x $←{0,1}n

[A(1n, f (x)) = B(x)] ≤ 1
2
+ negl(n).

A simple example. Let f be a one-way function. Consider the one-
way function g(b, x) = 0|| f (x) and a hard concentrate bit B(b, x) = b.
Intuitively, the value g(b, x) does not reveal any information about
the first bit b, thus no information about the value B(b, x) can be as-
certained. Hence A cannot predict the first bit with a non-negligible
advantage than a random guess. However, we are more interested in
the case where the hard concentrate bit is hidden because of compu-
tational hardness and not information theoretic hardness.

Remark 2.1. Given a one-way function f , we can construct another one-
way function g with a hard concentrate bit. However, we may not be able
to find a hard concentrate bit for f . In fact, it is an open question whether a
hard concentrate bit exists for every one-way function.

Intuitively, if a function f is one-way, it seems that there should
be a particular bit in the input x that is hard to compute given f (x).
However, we show that is not true:

Claim 2.3. If f : {0, 1}n → {0, 1}n is a one-way function, then there exists
a one-way function g : {0, 1}n+log n → {0, 1}n+log n such that ∀i ∈ [1, n +

log n], Bi(x) = xi is not a hard concentrate bit, where xi is the ith bit of x.

Proof. Define g : {0, 1}n+log(n) → {0, 1}n+log(n) as follows.

g(x, y) = f (xȳ)||xy||y,

where |x| = n, |y| = log n, xȳ is all bits of x except the yth bit, and xy

is the yth bit of x.
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First, one can show that g is still a one-way function. (We leave
this as an exercise!) Next, we show that Bi is not a hard concentrate
bit for ∀i ∈ [1, n] (clearly Bi is not a hard concentrate bit for i ∈
[n + 1, n + log n]). Construct an adversary Ai(1n+log n, f (xȳ)||xy||y)
that “breaks” Bi:

- If y ̸= i then output a random bit;

- Otherwise output xy.

Pr
x,y
[A(1n+log n, g(x, y)) = Bi(x)]

= Pr
x,y
[A(1n+log n, f (xȳ)||xy||y) = xi]

=
n− 1

n
· 1

2
+

1
n
· 1 =

1
2
+

1
2n

.

Hence Ai can guess the output of Bi with greater than 1
2 + negl(n)

probability.

2.5.1 Hard Concentrate Bit of any One-Way Permutation

We now show that a slight modification of every one-way function
has a hard concentrate bit. More formally,

Theorem 2.3. Let f : {0, 1}n → {0, 1}n be a one-way function. Define a
function g : {0, 1}2n → {0, 1}2n as follows:

g(x, r) = f (x)||r,

where |x| = |r| = n. Then we have that g is one-way and that it has a hard
concentrate bit, namely B(x, r) = ∑n

i=1 xiri mod 2.

Remark 2.2. If f is a (one-to-one) one-way function, then g is also a (one-
to-one) one-way function with hard concentrate bit B(·).

Proof. We leave it as an exercise to show that g is a one-way func-
tion and below we will prove that the function B(·) describe a hard
concentrate bit of g. More specifically, we need to show that if there
exists a non-uniform PPT A s.t. Prx,r[A(12n, g(x, r)) = B(x, r)] ≥
1
2 + ϵ(n), where ϵ is non-negligible, then there exists a non-uniform
PPT B such that Prx,r[B(12n, g(x, r)) ∈ g−1(g(x, r))] is non-negligible.
Below we use E to denote the event that A(12n, g(x, r)) = B(x, r). We
will present our proof in three steps, where each step progressively
increases in complexity: (1) the super simple case where we restrict
to A such that Prx,r[E] = 1, (2) the simple case where we restrict to A
such that Prx,r[E] ≥ 3

4 + ϵ(n), and finally (3) the general case where
Prx,r[E] ≥ 1

2 + ϵ(n).
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Super simple case. Suppose A guesses B(·) with perfect accuracy:

Pr
x,r
[E] = 1.

We now construct B that inverts g with perfect accuracy. Let ei de-
note the one-hot n-bit string 0 · · · 010 · · · 0, where only the i-th bit
is 1, the rest are all 0. B gets f (x)||r as input, and its algorithm is
described in Figure 2.3.

for i = 1 to n do
x′i ← A(12n, f (x)||ei)

end for
return x′1 · · · x′n||r

Figure 2.3: Super-Simple Case B
Observe that B(x, ei) = ∑n

j=1 xjei
j = xi. Therefore, the probability

that B inverts a single bit successfully is,

Pr
x

[
A(12n, f (x)||ei) = xi

]
= Pr

x

[
A(12n, f (x)||ei) = B(x, ei)

]
= 1.

Hence Prx,r[B(12n, g(x, r)) = (x, r)] = 1.

Simple case. Next moving on to the following more demanding case.

Pr
x,r
[E] ≥ 3

4
+ ϵ(n),

where ϵ(·) is non-negligible. We describe B’s algorithm for inverting
g in Figure 2.4. Here we can no longer use the super simple case
algorithm because we no longer know if A outputs the correct bit
on input f (x)∥ei. Instead, we introduce randomness to A’s input
expecting that it should be able to guess the right bit on majority
of those inputs since it has a high probability of guessing B(·) in
general. We now also need to make two calls to A to isolate the i-th
bit of x. Note that an iteration of B outputs the right bit if calls to A
output the correct bit because B(x, s)⊕ B(x, s⊕ ei) = xi:

for i = 1 to n do
for t = 1 to T = n

2ϵ(n)2 do

s $← {0, 1}n

xt
i ←A( f (x)||s)
⊕ A( f (x)||(s⊕ ei))

end for
x′i ← the majority of {x1

i , · · · , xT
i }

end for
return x′1 · · · x′n||R

Figure 2.4: Simple Case B
B(x, s)⊕ B(x, s⊕ ei) =∑

j
xjsj ⊕∑

j
xj(sj ⊕ ei

j)

=∑
j ̸=i

(xjsj ⊕ xjsj)⊕ xisi ⊕ xi(si ⊕ 1)

= xi

The key technical challenge in proving that B inverts g with non-
negligible probability arises from the fact that the calls to A made
during one iteration of B are not independent. In particular, all calls
to A share the same x and the calls A( f (x)||s) and A( f (x)||(s⊕ ei))

use correlated randomness as well.
We solve the first issue by showing that there exists a large set of x

values for which A still works with large probability. The latter issue
of lack of independence between A( f (x)||s) and A( f (x)||(s⊕ ei)) can
be solved using a union bound since the success probability of the
adversary A is high enough.
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Formally, define the set G of “good” x’s, for which it is easy for A
to predict the right bit:

G :=
{

x
∣∣∣∣Pr

r
[E] ≥ 3

4
+

ϵ(n)
2

}
.

Now we prove that G is not a small set. More formally, we claim that:

Pr
x $←{0,1}n

[x ∈ G] ≥ ϵ(n)
2

.

Assume that Pr
x $←{0,1}n

[x ∈ G] < ϵ(n)
2 . Then we have the following

contradiction:
3
4
+ ϵ(n) ≤ Pr

x,r
[E]

= Pr
x
[x ∈ G]Pr

r
[E|x ∈ G] + Pr

x
[x /∈ G]Pr

r
[E|x /∈ G]

<
ϵ(n)

2
· 1 + 1 ·

(
3
4
+

ϵ(n)
2

)
=

3
4
+ ϵ(n).

Now consider a single iteration for a fixed x ∈ G:

Pr
s

[
A( f (x), s)⊕A( f (x), s⊕ ei) = xi

]
= Pr

s
[Both A’s are correct] + Pr

s
[Both A’s are wrong]

≥ Pr
s
[Both A’s are correct] = 1− Pr

s
[Either A is wrong]

≥ 1− 2 · Pr
s
[A is wrong]

≥ 1− 2
(

1
4
− ϵ(n)

2

)
=

1
2
+ ϵ(n).

Let Yt
i be the indicator random variable that xt

i = xi (namely, Yt
i =

1 with probability Pr[xt
i = xi] and Yt

i = 0 otherwise). Note that
Y1

i , · · · , YT
i are independent and identical random variables, and for

all t ∈ {1, . . . , T}, we have Pr[Yt
i = 1] = Pr[xt

i = xi] ≥ 1
2 + ϵ(n). Next

we argue that majority of xt
i coincide with xi with high probability.

Pr[x′i ̸= xi] = Pr

[
T

∑
t=1

Yt
i ≤

T
2

]

= Pr

[
T

∑
t=1

Yt
i −

(
1
2
+ ϵ(n)

)
T ≤ T

2
−
(

1
2
+ ϵ(n)

)
T

]

≤ Pr

[∣∣∣∣∣ T

∑
t=1

Yt
i −

(
1
2
+ ϵ(n)

)
T

∣∣∣∣∣ ≥ ϵ(n)T

]
Let X1, · · · , Xm be i.i.d. random variables taking values 0 or 1. Let Pr[Xi = 1] = p.

By Chebyshev’s Inequality, Pr
[∣∣∑ Xi − pm

∣∣ ≥ δm
]
≤ 1

4δ2m
.

≤ 1
4ϵ(n)2T

=
1

2n
.
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Then, completing the argument, we have

Pr
x,r
[B(12n, g(x, r)) = (x, r)]

≥ Pr
x
[x ∈ G]Pr[x′1 = x1, · · · x′n = xn|x ∈ G]

≥ ϵ(n)
2
·
(

1−
n

∑
i=1

Pr[x′i ̸= xi|x ∈ G]

)

≥ ϵ(n)
2
·
(

1− n · 1
2n

)
=

ϵ(n)
4

.

Real Case. Now, we describe the final case where Prx,r[E] ≥ 1
2 + ϵ(n)

and ϵ(·) is a non-negligible function. The key technical challenge in
this case is that we cannot make two related calls to A as was done
in the simple case above since we can’t argue that both calls to A
will be correct with high enough probability. However, just using
one call to A seems insufficient. The key idea is to just guess one of
those values. Very surprisingly, this idea along with careful analysis
magically works out. Just like the previous two cases, we start by
describing the algorithm B in Figure 2.5.

T = 2n
ϵ(n)2

for ℓ = 1 to log T do

sℓ
$← {0, 1}n

bℓ
$← {0, 1}

end for
for i = 1 to n do

for all L ⊆ {1, 2, · · · , log T} do
SL :=

⊕
j∈L sj

BL :=
⊕

j∈L bj

xL
i ← BL ⊕A( f (x)||SL ⊕ ei)

end for
x′i ← majority of {x∅

i , · · · , x[log T]
i }

end for
return x′1 · · · x′n||R

Figure 2.5: Real Case B

In the beginning of the algorithm, B samples log T random strings
{sℓ}ℓ and bits {bℓ}ℓ. Since there are only log T values, with prob-
ability 1

T (which is polynomial in n) all the bℓ’s are correct, i.e.,
bℓ = B(x, sℓ). In the rest of this proof, we denote this event as F.
Now note that if F happens, then BL as defined in the algorithm is
also equal to B(x, SL) (we denote the kth-bit of s with (s)k):

B(x, SL) =
n

∑
k=1

xk(
⊕
j∈L

sj)k

=
n

∑
k=1

xk ∑
j∈L

(
sj
)

k

= ∑
j∈L

n

∑
k=1

xk(sj)k

= ∑
j∈L

B(x, sj)

= ∑
j∈L

bj

= BL

Thus, with probability 1
T , we have all the right guesses for one

of the invocations, and we just need to bound the probability that
A( f (x)||SL ⊕ ei) = B(x, SL ⊕ ei). However there is a subtle issue.
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Now the events Y∅
i , · · · , Y[log T]

i are no longer independent. Never-
theless, we can still show that they are pairwise independent, and the
Chebyshev’s Inequality still holds. Now we give the formal proof.

Just as in the simple case, we define the set G as

G :=
{

x
∣∣∣∣Pr

r
[E] ≥ 1

2
+

ϵ(n)
2

}
,

and with an identical argument we obtain that:

Pr
x $←{0,1}n

[x ∈ G] ≥ ϵ(n)
2

Pairwise Independence and Cheby-
shev’s Inequality. For the sake of com-
pleteness, we prove the Chebyshev’s
Inequality here.

Definition 2.4 (Pairwise Indepen-
dence). A collection of random variables
{X1, · · · , Xm} is said to be pairwise in-
dependent if for every pair of random
variables (Xi , Xj), i ̸= j and every pair of
values (vi , vj), it holds that

Pr[Xi = vi , Xj = vj] = Pr[Xi = vi ]Pr[Xj = vj]

Theorem 2.4 (Chebyshev’s Inequality).
Let X1, . . . , Xm be pairwise independent
and identically distributed binary random
variables. In particular, for every i ∈ [m],
Pr[Xi = 1] = p for some p ∈ [0, 1] and
Pr[Xi = 0] = 1− p. Then it holds that

Pr

[∣∣∣∣∣ m

∑
i=1

Xi − pm

∣∣∣∣∣ ≥ δm

]
≤ 1

4δ2m
.

Proof. Let Y = ∑i Xi . Then

Pr

[∣∣∣∣∣ m

∑
i=1

Xi − pm

∣∣∣∣∣ > δm

]

= Pr

( m

∑
i=1

Xi − pm

)2

> δ2m2


≤

E
[
|Y− pm|2

]
δ2m2 =

Var(Y)
δ2m2

Observe that

Var(Y) = E
[
Y2
]
− (E[Y])2

=
m

∑
i=1

m

∑
j=1

(
E
[
XiXj

]
−E [Xi ]E

[
Xj
])

By pairwise independence, for i ̸= j,

E
[
XiXj

]
= E [Xi ]E

[
Xj
]
.

=
m

∑
i=1

E
[

X2
i

]
−E [Xi ]

2

= mp(1− p).

Hence

Pr

[∣∣∣∣∣ m

∑
i=1

Xi − pm

∣∣∣∣∣ ≥ δm

]
≤ mp(1− p)

δ2m2 ≤ 1
δ2m

.

Next, given {bℓ = B(x, sℓ)}ℓ∈[log T] and x ∈ G, we have:

Pr
r

[
BL ⊕A( f (x)||SL ⊕ ei) = xi

]
= Pr

r

[
B(x, SL)⊕A( f (x)||SL ⊕ ei) = xi

]
= Pr

r

[
A( f (x)||SL ⊕ ei) = B(x, SL ⊕ ei)

]
≥ 1

2
+

ϵ(n)
2

For the same {bℓ}ℓ and x ∈ G, let YL
i be the indicator random vari-

able that xL
i = xi. Notice that Y∅

i , · · · , Y[log T]
i are pairwise indepen-

dent and Pr[YL
i = 1] = Pr[xL

i = xi] ≥ 1
2 + ϵ(n)

2 .

Pr[x′i ̸= xi] =Pr

 ∑
L⊆[log T]

YL
i ≤

T
2


=Pr

 ∑
L⊆[log T]

YL
i −

(
1
2
+

ϵ(n)
2

)
T ≤ T

2
−
(

1
2
+

ϵ(n)
2

)
T


≤Pr

∣∣∣∣∣∣ ∑
L⊆[log T]

YL
i −

(
1
2
+

ϵ(n)
2

)
T

∣∣∣∣∣∣ ≥ ϵ(n)
2

T


(By Theorem 2.4)

≤ 1

4
(

ϵ(n)
2

)2
T

=
1

2n
.

Completing the proof, we have that:

Pr
x,r
[B(12n, g(x, r)) = (x, r)]

≥ Pr
{bℓ,sℓ}ℓ

[F] · Pr
x
[x ∈ G] · Pr[x′1 = x1, · · · x′n = xn | x ∈ G ∧ F]

≥ 1
T
· ϵ(n)

2
·
(

1−
n

∑
i=1

Pr[x′i ̸= xi | x ∈ G ∧ F]

)

≥ ϵ(n)2

2n
· ϵ(n)

2
·
(

1− n · 1
2n

)
=

ϵ(n)3

8n
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Exercises

Exercise 2.1. If µ(·) and ν(·) are negligible functions then show that
µ(·) · ν(·) is a negligible function.

Exercise 2.2. If µ(·) is a negligible function and f (·) is a function polyno-
mial in its input then show that µ( f (·))4 are negligible functions. 4 Assume that µ and f are such that

µ( f (·)) takes inputs from Z+ and
outputs values in [0, 1].Exercise 2.3. Prove that the existence of one-way functions implies P ̸=

NP.

Exercise 2.4. Prove that there is no one-way function f : {0, 1}n →
{0, 1}⌊log2 n⌋.

Exercise 2.5. Let f : {0, 1}n → {0, 1}n be any one-way function then is

f ′(x)
de f
= f (x)⊕ x necessarily one-way?

Exercise 2.6. Prove or disprove: If f : {0, 1}n → {0, 1}n is a one-way
function, then g : {0, 1}n → {0, 1}n−log n is a one-way function, where
g(x) outputs the n− log n higher order bits of f (x).

Exercise 2.7. Explain why the proof of Theorem 2.1 fails if the attacker A
in Figure 2.2 sets i = 1 and not i $← {1, 2, · · · , q}.

Exercise 2.8. Given a (strong) one-way function construct a weak one-way
function that is not a (strong) one-way function.

Exercise 2.9. Let f : {0, 1}n → {0, 1}n be a weak one-way permutation
(a weak one way function that is a bijection). More formally, f is a PPT
computable one-to-one function such that ∃ a constant c > 0 such that ∀
non-uniform PPT machine A and ∀ sufficiently large n we have that:

Pr
x,A

[A( f (x)) ̸∈ f−1( f (x))] >
1
nc

Show that g(x) = f T(x) is not a strong one way permutation. Here f T

denotes the T times self composition of f and T is a polynomial in n.
Interesting follow up reading if interested: With some tweaks the func-

tion above can be made a strong one-way permutation using explicit con-
structions of expander graphs. See Section 2.6 in http://www.wisdom.

weizmann.ac.il/~oded/PSBookFrag/part2N.ps

http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps


3
Pseudorandomness

In this chapter, our objective is to transform a small amount of en-
tropy into a distribution that closely resembles randomness. The idea
is to start with a small amount of entropy, known as the “seed", and
use a deterministic process to generate a new distribution that ap-
pears “indistinguishable" from random. However, before we dive into
the specifics of how to achieve this, we need to clarify what we mean
by “indistinguishable."

3.1 Statistical Indistinguishability

The first definition of indistinguishability we will focus on is that
of statistical indistinguishability. It turns out that defining what it
means for two distributions to be indistinguishable by an adversary
is tricky. In particular, it is tricky to define indistinguishability for
a single pair of distributions because the length of the output of a
random variable is a constant. Therefore, in order for our definition
to make sense, we will work with collections of distributions, called
ensembles

Definition 3.1 (Ensemble of Probability Distributions). An ensemble
of probability distributions is a sequence of random variables {Xn}n∈N.

In this definition, n is a parameter. Sometimes, we write {Xn}n or
even simply Xn, when it is clear from context that we are talking
about an ensemble.
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Definition 3.2 (Statistical Indistinguishability). Two ensembles of
probability distributions {Xn}n and {Yn}n are said to be statistically
indistinguishable if for all adversaries A, the quantities

p(n) := Pr[A(Xn) = 1] = ∑
x

Pr[Xn = x]Pr[A(1n, x) = 1]

and

q(n) := Pr[A(Yn) = 1] = ∑
y

Pr[Yn = y]Pr[A(1n, y) = 1]

differ by a negligible amount. In particular, the ensembles are said to be
statistically indistinguishable if

∆A(n) = |p(n)− q(n)| = |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]|

is negligible in n. This equivalence is denoted by

{Xn}n ≈S {Yn}n

Note that our attacker in this scenario is not computationally bounded,
as is usual1. We also do not require the ensemble to be efficiently 1 Statistical indistinguishability is a very

strong requirement, and it makes use
of a very powerful adversary, so it will
serve mostly as an illustrative example.

samplable.
This definition is closely related to the concept of the statistical

distance between two probability distributions.

Definition 3.3 (Statistical Distance). The statistical distance between
two distributions X and Y is defined as

SD(X, Y) =
1
2 ∑

v∈S
|Pr[Xn = v]− Pr[Yn = v]|

where S = Support(Xn) ∪ Support(Yn).

In fact, we can show that ∆A(n) ≤ SD(Xn, Yn).

Lemma 3.1 (Relationship between SD and ∆A). For any adversary A,

∆A(n) ≤ SD(Xn, Yn)

Proof. Let Ω be the sample space for Xn and Yn.
Let T = {v ∈ Ω|Pr[v← Xn] > Pr[v← Yn]}.
First, we will prove that SD(Xn, Yn) = ∑

v∈Ω
|Pr[v ← Xn]− Pr[v ←

Yn]|.
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∑
v∈Ω

Pr[v← Xn] = ∑
v∈Ω

Pr[v← Yn] = 1

∑
v∈T

Pr[v← Xn] + ∑
v∈Ω\T

Pr[v← Xn] = ∑
v∈T

Pr[v← Yn] + ∑
v∈Ω\T

Pr[v← Yn]

∑
v∈T

(Pr[v← Xn]− Pr[v← Yn]) = ∑
v∈Ω\T

(Pr[v← Yn]− Pr[v← Xn])

∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]| = ∑

v∈Ω\T
|Pr[v← Yn]− Pr[v← Xn]|

∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]| = ∑

v∈Ω\T
|Pr[v← Xn]− Pr[v← Yn]|

∑
v∈Ω
|Pr[v← Xn]− Pr[v← Yn]| = ∑

v∈T
|Pr[v← Xn]− Pr[v← Yn]|

+ ∑
v∈Ω\T

|Pr[v← Xn]− Pr[v← Yn]|

2SD(Xn, Yn) = 2 · ∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]|

SD(Xn, Yn) = ∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]|

Now we will show the main result of the lemma.

∆A(n) = |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]|
= | ∑

v∈Ω
(Pr[A(v) = 1] · Pr[v← Xn])− (Pr[A(v) = 1] · Pr[v← Yn])|

= | ∑
v∈Ω

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])|

= | ∑
v∈T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])

+ ∑
v∈Ω\T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])|

= ∑
v∈T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])

+ ∑
v∈Ω\T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])

= ∑
v∈T

Pr[A(v) = 1] · |Pr[v← Xn])− Pr[v← Yn]|

+ ∑
v∈Ω\T

Pr[A(v) = 1] · |Pr[v← Xn])− Pr[v← Yn]|

≤ ∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]|

= SD(Xn, Yn)
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3.2 Computational Indistinguishability

We now turn to a more reasonable definition of indistinguishability.
In particular, this definition imposes the usual computational limits
on the adversary A. It also requires that the ensembles of distribu-
tions in question be efficiently samplable. Besides those changes,
however, the definition of computational indistinguishability is quite
similar to that of statistical indistinguishability.

Definition 3.4 (Computational Indistinguishability). Two ensembles of
probability distributions {Xn}n and {Yn}n (which are samplable in time
polynomial in n) are said to be computationally indistinguishable if for
all (non-uniform) PPT adversaries A, the quantities

p(n) := Pr[A(1n, Xn) = 1] = ∑
x

Pr[Xn = x]Pr[A(1n, x) = 1]

and

q(n) := Pr[A(1n, Yn) = 1] = ∑
y

Pr[Yn = y]Pr[A(1n, y) = 1]

differ by a negligible amount; i.e. |p(n) − q(n)| is negligible in n. This
equivalence is denoted by

{Xn}n ≈C {Yn}n

However, since this is the main form of indistinguishability that we are
concerned with, we will simply write

{Xn}n ≈ {Yn}n

We now prove some properties of computationally indistinguishable
ensembles that will be useful later on.

Lemma 3.2 (Sunglass Lemma). If {Xn}n ≈ {Yn}n and P is a PPT ma-
chine, then

{P(Xn)}n ≈ {P(Yn)}n

Proof. Consider an adversary A that can distinguish {P(Xn)}n from
{P(Yn)}n with non-negligible probability. Then the adversary A ◦ P
can distinguish {Xn}n from {Yn}n with the same non-negligible
probability. Since P and A are both PPT machines, the composition is
also a PPT machine. This proves the contrapositive of the lemma.

The name of the lemma comes from the idea that if two objects are
indistinguishable without putting on sunglasses, then they should
remain indistinguishable after putting on sunglasses.
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Lemma 3.3 (Multicopy Lemma). For a polynomial t : Z+ → Z+ let the
t-product of {Zn}n be

{Z(1)
n , Z(2)

n , . . . , Z(t(n))
n }n

where the Z(i)
n s are independent copies of Zn. If

{Xn}n ≈ {Yn}n

then
{X(1)

n , . . . , X(t)
n }n ≈ {Y(1)

n , . . . , Y(t)
n }n

as well.

Intuitively, if you can’t tell apart a red ball and a blue ball, then you
can’t tell apart multiple copies of the red and blue balls.

Proof. We proceed by what is known as a hybrid argument. Consider
the set of tuple random variables

H(i,t)
n = (Y(1)

n , . . . , Y(i)
n , X(i+1)

n , X(i+2)
n , . . . , X(t)

n )

for integers 0 ≤ i ≤ t. For instance, when i = 0:

H(0,t)
n = (X(1)

n , X(2)
n , . . . , X(t)

n ) = Xn

Similarly, when i = t:

H(t,t)
n = (Y(1)

n , Y(2)
n , . . . , Y(t)

n ) = Yn

Assume, for the sake of contradiction, that there is a PPT adver-
sary A that can distinguish between {H(0,t)

n }n and {H(t,t)
n }n with

non-negligible probability difference ε(n). Suppose that A returns
1 with probability Pi when it runs on samples from H(i,t)

n . That is,
Pi = Pr[A(H(i,t)

n = 1)] By definition, |P0 − Pt| ≥ ε(n).
Using the common add-one-subtract-one trick, we can find that

|P0 − Pt| = |P0 − P1 + P1 − P2 + ... + Pt−1 − Pt|
= |(P0 − P1) + (P1 − P2) + ... + (Pt−1 − Pt)|
≤ |P0 − P1|+ |P1 − P2|+ ... + |Pt−1 − Pt|

Since |P0 − Pt| ≥ ε(n), it follows that |P0 − P1| + |P1 − P2| + ... +
|Pt−1 − Pt| ≥ ε(n). Then there must exist some index k for which

|Pk − Pk+1| ≥
ε(n)

t

Note that ε(n)
t is non-negligible because t is polynomial. This implies

that {H(k,t)
n }n and {H(k+1,t)

n }n are distinguishable.
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Using this information, we can construct an adversary B that can
distinguish Xn from Yn. Given an input Zn, which is either Xn or Yn,
B works as follows:

B(Zn) = A(X1, ..., Xk−1, Z, Yk+1, ..., Yt)

By the argument above, for some value2 of k, this computation gives 2 B is non-uniform, so it can “know"
which value of k it should use.|Pr[B(Xn) = 1]− Pr[B(Yn) = 1]| ≥ ε(n)

t .
This is a contradiction.
Intuitively, the idea behind proofs by hybrid argument is to create

a chain of polynomially many hybrids such that the hybrids are
pairwise indistinguishable at each step. Visually:

H(0,t)
n ≈ H(1,t)

n ≈ H(2,t)
n ≈ ... ≈ H(t−1,t)

n ≈ H(t,t)
n

This implies that
H(0,t)

n ≈ H(t,t)
n

which is the same thing as saying that

Xn ≈ Yn

3.3 Pseudorandom Generators

Now, we can define pseudorandom generators, which intuitively
generates a polynomial number of bits that are computationally
indistinguishable from being uniformly random:

Definition 3.5. A function G : {0, 1}n → {0, 1}n+m with m = poly(n) is
called a pseudorandom generator if

• G is computable in polynomial time.

• Un+m ≈ G(Un), where Uk denotes the uniform distribution on {0, 1}k.

3.3.1 PRG Extension

In this section we show that any pseudorandom generator that pro-
duces one bit of randomness can be extended to create a polynomial
number of bits of randomness.

Construction 3.1. Given a PRG G : {0, 1}n → {0, 1}n+1, we construct a
new PRG F : {0, 1}n → {0, 1}n+l as follows (l is polynomial in n).

(a) Input: S0
$←− {0, 1}n.

(b) ∀i ∈ [l] = {1, 2, · · · , l}, (σi, Si) := G(Si−1), where σi ∈ {0, 1}, Si ∈
{0, 1}n .

(c) Output: σ1σ2 · · · σlSl .
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Theorem 3.1. The function F constructed above is a PRG.

Proof. We prove this by hybrid argument. Define the hybrid Hi as
follows.

(a) Input: S0
$←− {0, 1}n.

(b) σ1, σ2, · · · , σi
$←− {0, 1}, Si ← S0.

∀j ∈ {i + 1, i + 2, · · · , l}, (σj, Sj) := G(Sj−1), where σj ∈ {0, 1}, Sj ∈
{0, 1}n .

(c) Output: σ1σ2 · · · σlSl .

Note that H0 ≡ F, and Hl ≡ Un+l .
Assume for the sake of contradiction that there exits a non-uniform

PPT adversary A that can distinguish H0 form Hl . Define ϵi :=
Pr[A(1n, Hi) = 1] for i = 0, 1, · · · , l. Then there exists a non-negligible
function v(n) such that |ϵ0 − ϵl | ≥ v(n). Since

|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|+ · · ·+ |ϵl−1 − ϵl | ≥ |ϵ0 − ϵl | ≥ v(n),

there exists k ∈ {0, 1, · · · , l − 1} such that

|ϵk − ϵk+1| ≥
v(n)

l
.

l is polynomial in n, hence v(n)
l is also a non-negligible function.

That is to say, A can distinguish Hk from Hk+1. Then we use A to
construct an adversary B that can distinguish Un+1 from G(Un)

(which leads to a contradiction): On input T ∈ {0, 1}n+1 (T could be
either from Un+1 or G(Un)), B proceeds as follows:

• σ1, σ2, · · · , σk
$←− {0, 1}, (σk+1, Sk+1)← T.

• ∀j ∈ {k + 2, k + 3, · · · , l}, (σj, Sj) := G(Sj−1), where σj ∈ {0, 1}, Sj ∈
{0, 1}n .

• Output: A(1n, σ1σ2 · · · σlSl).

First, since A and G are both PPT computable, B is also PPT com-
putable.

Second, if T ← G(Un), then σ1σ2 · · · σlSl is the output of Hk; if

T $← Un+1, then σ1σ2 · · · σlSl is the output of Hk+1. Hence∣∣Pr[B(1n, G(Un)) = 1]− Pr[B(1n, Un+1) = 1]
∣∣

=
∣∣Pr[A(1n, Hk) = 1]− Pr[A(1n, Hk+1) = 1]

∣∣
=|ϵk − ϵk+1| ≥

v(n)
l

.



38 a course in theory of cryptography

3.3.2 PRG from OWP (One-Way Permutations)

In this section we show how to construct pseudorandom generators
under the assumption that one-way permutations exist.

Construction 3.2. Let f : {0, 1}n → {0, 1}n be a OWP. We construct G :
{0, 1}2n → {0, 1}2n+1 as

G(x, r) = f (x)||r||B(x, r),

where x, r ∈ {0, 1}n, and B(x, r) is a hard concentrate bit for the function
g(x, r) = f (x)||r.

Remark 3.1. The hard concentrate bit B(x, r) always exists. Recall Theo-
rem 2.3,

B(x, r) =

(
n

∑
i=1

xiri

)
mod 2

is a hard concentrate bit.

Theorem 3.2. The G constructed above is a PRG.

Proof. Assume for the sake of contradiction that G is not PRG. We
construct three ensembles of probability distributions:

H0 := G(U2n) = f (x)||r||B(x, r), where x, r $←− {0, 1}n;

H1 := f (x)||r||σ, where x, r $←− {0, 1}n, σ
$←− {0, 1};

H2 := U2n+1.

Since G is not PRG, there exists a non-uniform PPT adversary
A that can distinguish H0 from H2. Since f is a permutation, H1 is
uniformly distributed in {0, 1}2n+1, i.e., H1 ≡ H2. Therefore, A can
distinguish H0 from H1, that is, there exists a non-negligible function
v(n) satisfying∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]

∣∣ ≥ v(n).

Next we will construct an adversary B that “breaks” the hard con-
centrate bit (which leads to a contradiction). Define a new ensemble
of probability distribution

H′1 = f (x)||r||(1− B(x, r)), where x, r $←− {0, 1}n.

Then we have

Pr[A(H1) = 1] =Pr[σ = B(x, r)]Pr[A(H0) = 1] + Pr[σ = 1− B(x, r)]Pr[A(H′1) = 1]

=
1
2

Pr[A(H0) = 1] +
1
2

Pr[A(H′1) = 1].
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Hence

Pr[A(H1) = 1]− Pr[A(H0) = 1] =
1
2

Pr[A(H′1) = 1]− 1
2

Pr[A(H0) = 1],

1
2

∣∣Pr[A(H0) = 1]− Pr[A(H′1) = 1]
∣∣ = |Pr[A(H1) = 1]− Pr[A(H0) = 1]| ≥ v(n),∣∣Pr[A(H0) = 1]− Pr[A(H′1) = 1]
∣∣ ≥ 2v(n).

Without loss of generality, we assume that

Pr[A(H0) = 1]− Pr[A(H′1) = 1] ≥ 2v(n).

Then we construct B as follows:

B( f (x)||r) :=

σ, if A( f (x)||r||σ) = 1

1− σ, if A( f (x)||r||σ) = 0
,

where σ
$←− {0, 1}. Then we have

Pr[B( f (x)||r) = B(x, r)]

=Pr[σ = B(x, r)]Pr[A( f (x)||r||σ) = 1|σ = B(x, r)]+

Pr[σ = 1− B(x, r)]Pr[A( f (x)||r||σ) = 0|σ = 1− B(x, r)]+

=
1
2
(

Pr[A( f (x)||r||B(x, r)) = 1] + 1− Pr[A( f (x)||r||1− B(x, r)) = 1]
)

=
1
2
+

1
2
(

Pr[A(H0) = 1]− Pr[A(H′1) = 1]
)

≥1
2
+ v(n).

This contradicts the fact that B must be a hardness concentrate bit.

3.4 Pseudorandom Functions

In this section, we first define pseudorandom functions, and then
show how to construct a pseudorandom function from a pseudoran-
dom generator.

Considering the set of all functions f : {0, 1}n → {0, 1}n, there
are (2n)2n

of them. To describe a random function in this set we
need n · 2n bits. Intuitively, a pseudorandom function is one that
cannot be distinguished from a random one, but needs much fewer
bits (e.g., polynomial in n) to be described. Note that we restrict the
distinguisher to only being allowed to ask the function poly(n) times
and decide whether it is random or pseudorandom.

3.4.1 Definitions

Definition 3.6 (Function Ensemble). A function ensemble is a sequence
of random variables F1, F2, · · · , Fn, · · · denoted as {Fn}n∈N such that Fn

assumes values in the set of functions mapping n-bit input to n-bit output.
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Although we will only focus on the functions where the input and
output bit-length is the same, the definition can be generalized to
functions mapping n-bit inputs to m-bit outputs as {Fn,m}n,m∈N.

Definition 3.7 (Random Function Ensemble). We denote a random func-
tion ensemble by {Rn}n∈N.

A sampling of the random variable Rn requires n · 2n bits to describe.

Definition 3.8 (Efficiently Computable Function Ensemble). A func-
tion ensemble is called efficiently computable if

(a) Succinct: ∃ a PPT algorithm I and a mapping ϕ from strings to func-
tions such that ϕ(I(1n)) and Fn are identically distributed. Note that we
can view the output of I(·) as the description of the function.

(b) Efficient: ∃ a poly-time machine V such that V(i, x) = fi(x) for every
x ∈ {0, 1}n, where i is in the range of I(1n), and fi = ϕ(i).

Note that the succinctness condition implies that a sample from
Fn can be equivalently generated by first sampling a random string k
from {0, 1}n, and then outputting fk. Here k is often called the “key”
of the function3. More generally, the key can be a string of length m 3 An efficiently computable function re-

quires only n bits (the key) to describe,
while a random function requires n.2n

bits.

where n is polynomial in m; here I uses a random tape of length m
and outputs n bits.

Definition 3.9 (Pseudorandom Function Ensemble). A function ensem-
ble F = {Fn}n∈N is pseudorandom if for every non-uniform PPT oracle
adversary A, there exists a negligible function ϵ(n) such that∣∣Pr[AFn(1n) = 1]− Pr[ARn(1n) = 1]

∣∣ ≤ ϵ(n).

Here by saying “oracle” it means that A has “oracle access” to a (fixed)
function (in our definition, the function is a sampling of Fn or Rn), and each
call to that function costs 1 unit of time.

Note that we will only consider efficiently computable pseudo-
random ensembles in the following. Therefore, each function in Fn is
defined by a PRF key k ∈ {0, 1}n.

3.4.2 Construction of PRF from PRG

Construction 3.3. Given a PRG G : {0, 1}n → {0, 1}2n, let G0(x)
be the first n bits of G(x), G1(x) be the last n bits of G(x). We construct
F(K) : {0, 1}n → {0, 1}n as follows.

F(K)
n (x1x2 · · · xn) := Gxn(Gxn−1(· · · (Gx1(K)) · · · )),

where K ∈ {0, 1}n is the key to the pseudorandom function. In Figure 3.1,
i = K.
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The construction can be viewed as a binary tree of depth n, as shown
in Figure 3.14. 4 Algorithmically, F(K)

n (x) is computed
as:

1. Set y← K ∈ {0, 1}n.

2. For i = 1 . . . n: update y← Gxi (y).

3. Output y.

𝑖𝑖
𝐺𝐺0 𝐺𝐺1

𝐺𝐺0 𝐺𝐺1

𝑥𝑥1 = 0

𝑥𝑥2 = 1

Output

(random 𝑛𝑛-bit string)

Figure 3.1: View the construction as a
binary tree

Theorem 3.3. The function ensemble {Fn}n∈N constructed above is pseu-
dorandom.

Proof. Assume for the sake of contradiction that {Fn}n∈N is not a
PRF. Then there exists a non-uniform PPT oracle adversary A that
can distinguish {Fn}n∈N from {Rn}n∈N. Below, via a hybrid argu-
ment, we prove that this contradicts the fact that G is a PRG; we will
construct an adversary B that can distinguish between a sample from
U2n and G(Un). We will prove for a fixed n, and the proof can be
easily extended to all n ∈N.

Hybrids. Consider the sequence of hybrids Hi for i ∈ {0, 1, · · · , n}
where the hybrid i is defined as follows:

H(Ki)
i (x1x2 . . . xn) := Gxn(Gxn−1(· · · (Gxi+1(Ki(x1 . . . xi−1xi))) · · · )),

where Ki is a random function from {0, 1}i to {0, 1}n. Intuitively,
hybrid Hi corresponds to a binary tree of depth n where the nodes of
levels 0 to i correspond to random values and the nodes at levels i + 1
to n correspond to pseudorandom values. By inspection, observe that
hybrids H0 and Hn are identical to a pseudorandom function and a
random function, respectively. Note that we cannot yet reduce the
computational indistinguishability of Hi and Hi+1 to security of the
PRG G because the adversary can make multiple oracle queries at
different inputs.

Sub-hybrids. We show that Hi and Hi+1 are indistinguishable
by considering a sequence of sub-hybrids Hi,j for j ∈ {0, . . . q},
where q is the number of oracle queries made by A5. Intuitively, 5 Observe that A can make at most

polynomial in n oracle queries. Looking
ahead, our outer adversary B can either
take q as the max queries allowed to
A, or guess the number, and double
the guess each time if it’s an under-
estimate.

with each sub-hybrid Hi,j, at level i + 1 in the tree, we will fix the
first j oracle queries made by A to be output of random functions
and the rest to be output of PRG. Let Ri : {0, 1}i → {0, 1}n and
Si : {0, 1}i+1 → {0, 1}n be two random functions. We define sub-
hybrid H(Ri ,Si)

i,j (x1x2 . . . xn) algorithmically as follows:

1. Initialize a list L ← {} to store the i-bit prefixes of the queries
made by A.

2. If |L| < j or (x1 . . . xi) ∈ L6: 6 Captures the first j queries or any
query with repeated i-bit prefix to a
previous query.(a) Set y← Si(x1 . . . xixi+1).

(b) Append (x1 . . . xi) to L.
(c) For a ∈ i + 2 . . . n: update y← Gxa(y).

3. Else:

(a) Set y← Ri(x1 . . . xi).



42 a course in theory of cryptography

(b) For a ∈ i + 1 . . . n: update y← Gxa(y).

4. Output y.

Note that Hi,0 is the same as Hi and Hi,q is the same as Hi+1. Since
we assumed that A can distinguish between H0 and Hn, by trian-
gle inequality, there exists a i∗, j∗ such that it can distinguish Hi∗ ,j∗

and Hi∗ ,j∗+1. We now focus on these two sub-hybrids7. Consider the 7 Looking ahead, the outer adversary
B can guess i∗, j∗; total choices are
bounded by polynomial in n. To sim-
plify the proof, we will assume that B
already knows this i∗, j∗.

j∗ + 1-th query made by A (i.e. the first query where |L| = j). Ob-
serve that this query cannot have the same i-bit prefix as any of the
previous queries. Because if it did, then the output distribution of the
two hybrids would be identical, and that contradicts our assumption
about A’s distinguishing power. Therefore, the j∗ + 1-th query has
to be a new query, and this query is the only place where the two
hybrids differ.

Outer adversary B. Now we are ready to construct our outer adver-
sary B that can distinguish between U2n and G(Un). BA,i∗ ,j∗(1n, z),
where z ∈ {0, 1}2n (z could be either from U2n or G(Un)) and we
assume the knowledge of i∗, j∗8, operates as follows: 8 As mentioned before, it can be

guessed with slight loss in distin-
guishing advantage.1. Parse z as z0||z1, where z0, z1 ∈ {0, 1}n.

2. For all the oracle queries from A except the j∗ + 1-th query, re-
spond as Hi∗ ,j∗

9. 9 The outer adversary B runs a random
function in polynomial time in n via
lazy sampling. It generates a random
output on a new input and caches
responses to previous inputs.

3. For the j∗ + 1-th query (x1 . . . xn), do the following:

(a) Set y← zxi∗+1 .

(b) For a ∈ i∗ + 2 . . . n: update y← Gxa(y).

(c) Respond with y.

4. Output whatever A outputs.

We assumed that A can distinguish between Hi∗ ,j∗ and Hi∗ ,j∗+1, so
by contrapositive of the Sunglass Lemma, B can distinguish between
U2n and G(Un). This contradicts that G is a PRG.

3.5 PRFs from DDH: Naor-Reingold PRF

We will now describe a PRF function family Fn : K × {0, 1}n → Gn

where DDH is assumed to be hard for {Gn} and K is the key space.
The key for the PRF Fn will be K = (h, u1, . . . un), where u, u0 . . . un

are sampled uniformly from |Gn|, g is the generator of Gn and h =

gu. Compared to the previous construction (Theorem 3.3), there are
two differences to note already: the key is polynomially longer and
the output space is Gn instead of {0, 1}n.
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Fn(K, x) = h∏i u
xi
i

Next, we will prove that the function Fn is a pseudo-random func-
tion or that {Fn} is a pseudo-random function ensemble.10 10 Here, we require that adversary

distinguish the function Fn from a
random function from {0, 1}n to Gn.
Note that the output range of the
function is Gn. Moreover, note that
the distribution of random group
elements in Gn might actually be far
from uniformly random strings.

Lemma 3.4. Assuming the DDH Assumption (see Definition 1.7) for {Gn}
is hard, we have that {Fn} is a pseudorandom function ensemble.

Proof. The proof of this lemma is similar to the proof of Theorem 3.3
except for some subtle differences that arise from number theory11.

11 At a high-level, we can no longer
fix nodes in the same level of the
tree arbitrarily. Fixing one node has
implications for how other nodes will
be changed. This is because we have a
fixed basis in the key.

Let Rn be random function from {0, 1}n → Gn. Then we want to
prove that for all non-uniform PPT adversaries A we have that:

µ(n) =
∣∣∣Pr[AFn(1n) = 1]− Pr[ARn(1n) = 1]

∣∣∣
is a negligible function.

Hybrids. For the sake of contradiction, we assume that the function
Fn is not pseudorandom. Next, towards a contradiction, we consider
a sequence of hybrid functions H0

n . . . Hn
n . For j ∈ {0, . . . , n}, let

Sj
n : {0, 1}j → {0, 1, . . . , |Gn| − 1}, then hybrid H j

n is defined as12: 12 Algorithmically, H j
n((u, uj+1 . . . un), x)

is computed as:

1. Set y← Sj
n(x1 . . . xj).

2. For i = j + 1 . . . n: update y← y · uxi
i .

3. Output gy.

H j
n((u, uj+1 . . . un), x) =

(
gSj

n(x1 ...xj)
)∏n

i=j+1 u
xi
i

where S0
n(·) is the constant function with output u. Observe that

H0
n is the same as the function Fn and Hn

n is the same as the func-
tion Rn

13. Thus, by a hybrid argument and triangle inequality, we 13 A uniform group element is equiv-
alently sampled by first sampling an
exponent in the order of the group.

conclude that there exists j∗ ∈ {0, . . . n− 1}, such that∣∣∣∣Pr[AH j∗
n (1n) = 1]− Pr[AH j∗+1

n (1n) = 1]
∣∣∣∣

is a non-negligible function. Now all we are left to show is that this
implies an attacker that refutes the DDH assumption.

Sub-hybrids. The proof of this claim follows by a sequence of q + 1
sub-hybrids H j,0

n , . . . , H j,q
n , where q is the (polynomially bounded by

n) running time of A. For the simplicity of exposition, we abuse the
notation and denote q(n) by q. Let Cj

n : {0, 1}j → {0, . . . , |Gn| − 1}
and Dj

n : {0, 1}j+1 → {0, . . . , |Gn| − 1} be two random functions, and
C0

n(·) = u. We define sub-hybrid H j,k
n
(
(u, uj+1 . . . un), (x1 . . . xn)

)
for

k ∈ {0, . . . , q} as follows:

1. Initialize a list L ← {} to store the j-bit prefixes of the queries
made by A.

2. If |L| < k or (x1 · · · xj) ∈ L:

(a) Set y← Dj
n(x1 . . . xj+1).

(b) Append (x1 . . . xj) to L.
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(c) For i = j + 2 . . . n: update y← y · uxi
i .

3. Else

(a) Set y← Cj
n(x1 . . . xj).

(b) For i = j + 1 . . . n: update y← y · uxi
i .

4. Output gy.

It is easy to see that H j,0
n is the same as H j

n and H j,q
n is the same as

H j+1
n . Again, we use hybrid argument to conclude that there exists

j∗, k∗ such that A can distinguish between H j∗ ,k∗
n and H j∗ ,k∗+1

n with
non-negligible probability. We now focus on these two sub-hybrids.
Consider the k∗ + 1-th oracle query made by A. Following an identi-
cal argument we used in the proof of Theorem 3.3, this query cannot
be a repeat of a query made before, and this query is the only place
where the two sub-hybrids differ.

Outer adversary B. The construction of the outer adversary B is a
bit different from the proof of Theorem 3.3. Intuitively, unlike The-
orem 3.3, outer adversary cannot simply replace the k∗ + 1-th query
with the DDH challenge in isolation from the rest of the queries
made by A. This is because the pseudorandom nodes in the tree are
tied together by the DDH relation, and are not independent, i.e., all
pseudorandom sibling nodes on the same level of the tree are set
apart by a common exponent.
B gets as challenge either a DDH tuple (g, A = ga, B = gb, C = gab)

or a uniform tuple (g, A = ga, B = gb, C = gc) where a, b, c are
uniform in {0, . . . , |G| − 1}. We construct BA,j∗ ,k∗(1n, (g, A, B, C)

)
as

follows:

1. Sample u, uj∗+1, . . . un uniformly from {0, . . . , |Gn| − 1}.

2. For first k∗ queries from A, respond as H j∗ ,k∗
n ((u, uj∗+1, . . . un), ·).

3. For the k∗ + 1-th query (x1 . . . xn), do the following:

(a) Set y← A if xj∗+1 = 0 and y← C if xj∗+1 = 1.
(b) For i = j∗ + 2 . . . n: update y← y · uxi

i .
(c) Output gy.

4. For the rest of the queries (x1 . . . xn), do the following:

(a) Set y← Cj
n(x1 . . . xj).

(b) For i = j∗ + 2 . . . n: update y← y · uxi
i .

(c) If xj∗+1 = 0, output gy, else output14 By. 14 Recall that B = gb, so By = gy·b =

gy·bx
j∗+1 . Therefore, the DDH relation

is properly set for all pseudorandom
nodes.

5. Output whatever A outputs.

By the construction of B, if (g, A, B, C) is a DDH tuple, then the
distribution of oracle responses seen by A are exactly the same as the
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responses seen in the hybrid H j∗ ,k∗
n . Otherwise, they are the same as

hybrid H j∗ ,k∗+1
n . We assumed that A can distinguish between H j∗ ,k∗

n

and H j∗ ,k∗+1
n , therefore B can distinguish between a DDH tuple and a

uniform tuple. This contradicts our assumption that DDH is hard.
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Exercises

Exercise 3.1. Prove or disprove: If f is a one-way function, then the follow-
ing function B : {0, 1}∗ → {0, 1} is a hardconcentrate predicate for f . The
function B(x) outputs the inner product modulo 2 of the first ⌊|x|/2⌋ bits
of x and the last ⌊|x|/2⌋ bits of x.

Exercise 3.2. Let ϕ(n) denote the first n digits of π = 3.141592653589 . . .
after the decimal in binary (π in its binary notation looks like 11.00100100001111110110101010001000100001 . . .).

Prove the following: if one-way functions exist, then there exists a one-
way function f such that the function B : {0, 1}∗ → {0, 1} is not a hard
concentrate bit of f . The function B(x) outputs ⟨x, ϕ(|x|)⟩, where

⟨a, b⟩ :=
n

∑
i=1

aibi mod 2

for the bit-representation of a = a1a2 · · · an and b = b1b2 · · · bn.

Exercise 3.3. If f : {0, 1}n × {0, 1}n → {0, 1}n is PRF, then in which of
the following cases is g : {0, 1}n × {0, 1}n → {0, 1}n also a PRF?

1. g(K, x) = f (K, f (K, x))

2. g(K, x) = f (x, f (K, x))

3. g(K, x) = f (K, f (x, K))

Exercise 3.4 (Puncturable PRFs.). Puncturable PRFs are PRFs for which
a key can be given out such that, it allows evaluation of the PRF on all
inputs, except for one designated input.

A puncturable pseudo-random function F is given by a triple of efficient
algorithms (KeyF,PunctureF, and EvalF), satisfying the following condi-
tions:

- Functionality preserved under puncturing: For every x∗, x ∈ {0, 1}n

such that x∗ ̸= x, we have that:

Pr[EvalF(K, x) = EvalF(Kx∗ , x) : K ← KeyF(1
n), Kx∗ = PunctureF(K, x∗)] = 1

- Pseudorandom at the punctured point: For every x∗ ∈ {0, 1}n we
have that for every polysize adversary A we have that:

|Pr[A(Kx∗ ,EvalF(K, x∗)) = 1]−Pr[A(Kx∗ ,EvalF(K, Un)) = 1]| = negl(n)(n)

where K ← KeyF(1n) and KS = PunctureF(K, x∗). Un denotes the
uniform distribution over n bits.

Prove that: If one-way functions exist, then there exists a puncturable
PRF family that maps n bits to n bits.

Hint: The GGM tree-based construction of PRFs from a length doubling
pseudorandom generator (discussed in class) can be adapted to construct a
puncturable PRF. Also note that K and Kx∗ need not be the same length.



4
Private-Key Cryptography

4.1 Private-Key Encryption

The first primitive that we will study in private-key cryptography
is that of private-key encryption. When talking about private-key
encryption, we will be working in a setting where two players, Alice
and Bob, are attempting to communicate with each other.

Alice and Bob want to communicate with each other. For simplic-
ity, let’s assume that only Alice wants to send a message to Bob. The
crucial property that they want is that no eavesdropper attempting to
listen to the conversation should be able to decipher the contents of
the message being sent.

To achieve this, the two employ the following communication
protocol:

1. A priori, Alice and Bob generate a key k and distribute it in such a
way that only the two of them know what k is.

2. Using k, Alice can encrypt her message m, to turn it into a cipher-
text c, which she sends over to Bob.

3. Upon receiving c, Bob can decrypt its contents and recover m by
using k.

This meta-scheme implies a couple of requirements. First of all, we
want Bob to indeed be able to recover m when decrypting c with k.
It is no use having a communication scheme where the message re-
ceived is not the one sent. We will call this requirement correctness.
The second requirement, which we have already mentioned, is confi-
dentiality. To reiterate, confidentiality means that no eavesdropper that
manages to get a hold of c should be able to learn anything about c
that they do not already know (assuming they have no knowledge
of the key k). In addition to these two fundamental requirements, we
might also impose that our private-key encryption scheme guaran-
tees integrity and authenticity. By integrity, we mean that Bob should
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be able to detect that the message c has been tampered with prior to
him receiving it. By authenticity, we mean that Bob should be able to
verify that the message he received was indeed sent by Alice, and not
some adversary interfering with the conversation.

Now that we have some intuitive understanding of what we are
trying to achieve, let us attempt to ground it in mathematics.

Definition 4.1 (Private-Key Encryption Scheme). A private-key encryp-
tion scheme Π is a tuple Π = (Gen,Enc,Dec), where Gen,Enc, and Dec are
algorithms such that:

1. Gen(1n)→ k

2. Enc(k, m)→ c

3. Dec(k, c)→ m′

where n is a security parameter and k, c, m, m′ ∈ {0, 1}∗

Now, we will formalize the requirements of our cryptosystem. Our
first requirement is correctness, which is defined below:

Definition 4.2 ((Perfect) Correctness). We say that a private-key
encryption scheme Π = (Gen,Enc,Dec) is (perfectly) correct if
∀n, k ∈ Gen(1n), m ∈ {0, 1}∗,

Pr[Dec(k,Enc(k, m)) = m] = 1

That is, if c = Enc(k, m), then Bob is guaranteed to recover m by
running Dec(k, c). Note that for a fixed-length encryption scheme, we
require that m ∈ {0, 1}l(n).

Next, we will formalize what we mean by confidentiality. We will
often use the terms confidentiality and security interchangeably in the
context of private-key encryption schemes. Our first definition of
confidentiality is called IND Security, stated below:

Definition 4.3 (IND Security). ∀m0, ∀m1 s.t. |m0| = |m1| = l(n) and ∀
nu-PPT A we have

|Pr[A(1n,Enc(k, m0)) = 1 | k← Gen(1n)]−|Pr[A(1n,Enc(k, m1)) = 1 | k← Gen(1n)]| = neg(n)

Note that this is not a particularly good definition of security, in the
sense that the attacker is very limited in what they are allowed to do.
Specifically, all that A can do is take a look at the encryption of m0

and m1 and must decide which one is the plaintext. We need a more
usable and realistic definition of security. For this reason, we will
allow the attacker to have oracle access to the encryption function,
Enc(k, ·). In other words, A will be able to craft their own ciphertexts,
which it can then use to break the security of the encryption scheme.
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We shall dub this new definition of security Chosen Plaintext Attack
Security, or CPA Security for short.

In defining CPA Security, we will also introduce a new method for
defining private-key encryption schemes: the game-style definition.
The rationale behind this change in style is that probabilistic defi-
nitions, while precise and rigorous, are rather cumbersome to work
with, especially in the context of secure communication. Therefore,
we will adopt this new paradigm, which will make it easier to work
with and reason about private-key encryption schemes.

Priv-IND-CPAAΠ(n)

1 : b $←− {0, 1}

2 : k
$←− Gen(1n)

3 : (state, m0, m1)
$←− AEnc(k,·)(1n)

4 : c $←− Enc(k, mb)

5 : b′ $←− AEnc(k,·)(state, c)

6 : return b = b′ ∧ |m0| = |m1| = l(n)Definition 4.4 (CPA Security). A private-key encryption scheme
Π = (Gen,Enc,Dec) is CPA-secure if ∀ nu-PPT A

Adv
ind-cpa
Π,A (n) =

∣∣∣Pr[Priv-IND-CPAAΠ(n) = 1]− 1
2

∣∣∣
is a negligible function.

Observe that in this new game-style definition, we have a concrete
notion of the order in which each action is taken. One important
detail to note (and that is more evident in a game-style definition)
is that in our CPA Security definition, the key k is sampled before m0

and m1 are fixed. This is in contrast to IND Security, in which the
messages m0 and m1 are chosen before the key k is sampled1. 1 This is an important detail because

if m0 and m1 are chosen before k is
sampled, then giving oracle access to A
is not much help.

To further illustrate this point, consider the following scheme,
which is secure in IND but insecure in CPA:

• Gen(1n) :

1. k← Gen(1n)

2. x $←− {0, 1}n

3. k′ = (k, x)

• Enc′(k′, m)L :

1. if m = x, then output x

2. else, output Enc(k, m)||x

The final security notion we will define is CCA (chosen-ciphertext
attack) security. Here, the attacker is allowed oracle access to both the
encryption and the decryption functions. Let L be the working list
of queries that A has made to Dec(k, ·). Then Priv-IND-CCAAΠ(n) is
defined as:

Priv-IND-CCAAΠ(n)

1 : b $←− {0, 1}

2 : k
$←− Gen(1n)

3 : (state, m0, m1)
$←− AEnc(k,·),Dec(k,·)(1n)

4 : c $←− Enc(k, mb)

5 : b′ $←− AEnc(k,·),Dec(k,·)(state, c)

6 : return b = b′ ∧ |m0| = |m1| ∧ c /∈ LDefinition 4.5 (CCA Security). A private-key encryption scheme Π =

(Gen,Enc,Dec) is CCA-secure if ∀ nu-PPT A

Advind-cca
Π,A (n) =

∣∣∣Pr[Pri-IND-CCAAΠ(n) = 1]− 1
2

∣∣∣
is a negligible function.



50 a course in theory of cryptography

Π is a fixed-length encryption scheme for length l(n) if l(n) is
polynomial in n and |m0| = |m1| = l(n).

Theorem 4.1. If F is a PRF then the scheme Π = (Gen,Enc,Dec) given be-
low is a secure encryption scheme for length n.

• Gen(1n):

1. output k $←− {0, 1}n

• Enc(k, m):

1. r $←− {0, 1}n

2. output (r, Fk(r)⊕m)

• Dec(k, c = (c1, c2)):

1. output c2 ⊕ Fk(c1)

Proof. Assume there exists a nu-PPT A that is able to break CPA
security of Π. Then we can construct a nu-PPT adversary B that
breaks the PRF F. The strategy is outlined in the figure below:

B
x

F(x)

A

x∗

F(x∗)

Output b = b′

m

c

m0, m1

c∗

b

1. x $←− {0, 1}n

2. y = F(x)

3. c = (x, m⊕ y)

4. b $←− {0, 1}

5. x∗ $←− {0, 1}n

6. c∗ = (x∗, mb ⊕ F(x∗))

After running this procedure, we guess “Pseudorandom" if b = b′.
Else, we guess random.

Now we argue that

|Pr[BFn(·)(1n) = 1]− Pr[BFn(·)(1n) = 1]|
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is non-negligible.

|Pr[BFn(·)(1n) = 1]− Pr[BFn(·)(1n) = 1]| ≥ 1
2
+ ϵ(n)− (

1
2
+

q(n)
2n )

= ϵ(n)− q(n)
2n

Theorem 4.2. No deterministic encryption scheme Π can be CPA Secure.

Proof. The proof of this claim is simple. If we have a deterministic
encryption scheme, then when we get c∗, we can again try to encrypt
a message and check if c = c∗

4.1.1 Counter Mode Encryption

One construction of a CCA-secure cipher is by the use of the counter
mode.

• Enc(k, (m1, ..., mℓ)) :

1: r $←− {0, 1}n

2: Output c = (r, m1 ⊕ Fk(r + 1), m2 ⊕ Fk(r + 2), ..., mℓ ⊕ Fk(r + ℓ))

Consider the following picture:

x1 x1 + q(n) x2 x2 + q(n) ...

Then the probability of breaking this cipher is

2q(n)− 1
2n · q(n)

In practice, we use block ciphers, which are stronger primitives.

4.2 Message Authentication Codes

Now we address the question of how we can guarantee the integrity
of a message. To achieve this, we will construct a new primitive,
called a message authentication code, or MAC for short. MACs generate
a verifiable tag t for a message m that cannot be forged.

When sending a message, Alice sends the pair (m, t). Once Bob
receives the message, he runs Verify(k, m, t). He accepts the message
if Verify(k, m, t) = 1, otherwise he rejects the message. The formal
definition is stated below:
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Definition 4.6 (Private-Key Encryption Scheme). A MAC scheme Π is
a tuple of algorithms Π = (Gen,MAC,Verify), with the following syntax:

1. k← Gen(1n)

2. t← MAC(k, m)

3. 0/1← Verify(k, m, t)

where n is a security parameter and k, m ∈ {0, 1}l(n)

We impose the following correctness requirement on our MACs:

Definition 4.7 (MAC Correctness).

∀n, k ∈ Gen(1n), m ∈ {0, 1}∗, Pr[Verify(k, m,MAC(k, m)) = 1] = 1

We also want the message authentication codes to be unforgeable.
That is, given a message m, a nu-PPT attacker A should only be able
to forge a tag t for m with negligible probability.

Definition 4.8 (EUF-CMA Security). A MAC scheme Π =

(Gen,MAC,Verify) is EUF-CMA-secure if ∀ nu-PPT A,∣∣∣Pr
[
MAC-forgeA,Π(n) = 1

] ∣∣∣ = negl(n)

Definition 4.9 (MAC-forgeA,Π(n)).

1. Setup: The challenger samples k uniformly from the key space. A is
given 1n.

2. Query: The adversary submits a message m(i); then the challenger com-
putes a tag t(i) ← MAC(k, m(i)) and sends it to the adversary. The
adversary may submit any polynomial number of message queries.

Let Q = {(m(1), t(1)), . . . , (m(q), t(q))} be the set of messages m(i) sub-
mitted in the query phase along with the tags t(i) computed by MAC.

3. Forgery: The adversary outputs a message-tag pair (m∗, t∗). The output
of the game is 1 if (m∗, t∗) /∈ Q and Verify(k, m∗, t∗) = 1. The output is
0 otherwise.

4.3 Fixed-length MACs

Previously, we defined what a MAC is, and specified correctness and
security definitions for MACs. In this section, we’ll define a fixed-
length MAC for length ℓ(n).



private-key cryptography 53

Theorem 4.3. If F : {0, 1}n → {0, 1}n is a secure PRF, then the MAC
scheme Π = (Gen,Mac,Verify) constructed below has EUF-CMA security.

• Gen(1n) :

Output k $←− {0, 1}n

• MAC(k, m) :

Output t = Fk(m)

• Verify(k, m, t)

If t = Fk(m), then return 1.
Otherwise return 0.

That is, we just compute the PRF on our message as the MAC.

Proof. To prove security, suppose for contradiction that there exists
an adversary A that breaks the security for Π. We’d like to construct
an adversary B that breaks the security of the PRF.

Here, the adversary A expects queries for tags, given messages as
input. B can simply forward these requests on to F, and return the
response back to A. Further, A outputs a pair (m∗, t∗), which B can
send m∗ to F, and output whether t = t∗.

B
A

m
t

Fk

...
...

(m∗, t∗)m∗Fk t

t ?
= t∗

Analyzing the probability for B, we have

∣∣∣Pr(BFk(·)(1n) = 1)− Pr(BRn(·)(1n) = 1)
∣∣∣ = ∣∣∣∣εA(n)−

1
2n

∣∣∣∣ = nonnegl(n).

Here, the first term is because the correctness follows immediately
from the correctness of A, and the second term is due to the fact that
the output of Rn is random.
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4.4 Variable-length MACs

Now, let us look at messages with lengths that are a multiple of n.
In particular, we have a few blocks m1, . . . , mℓ, each of size n. There
are a few ways to do this, but we’ll look at a method similar to the
counter mode we looked at last time.

m1 m2 m3 · · · mℓ

Fk Fk Fk . . . Fk

+ + . . . +

This construction avoids having to store a tag equal in length to
the message, but this is not secure, due to length extension attacks. In
particular, suppose we query for the tag t associated with 0n. We can
then query another tag t′ for 0n ⊕ t. Observe here that t′ is also the
tag for 02n.

A solution is to use different keys for each PRF, but this isn’t too
efficient, since we’re still calling the PRF once per block of length
n. We’ll instead improve this to use only one block cipher call—we
do some preprocessing and only call Fk once on the output of the
preprocessing.

In particular, we’ll claim that applying a universal hash function to
the input and then applying the block cipher is a secure MAC.

Definition 4.10 (Universal Hash Function). A function h : F × F ∗ →
F (where F is a field of size 2m) is a universal hash function if for all
m, m′ ∈ F≤ℓ (i.e. m and m′ have length at most ℓ),

Pr
s
(h(s, m) = h(s, m′)) ≤ ℓ

|F| .

That is, the probability of collision is small.

Crucially here, we fix m and m′, and we sample s. (If we fix an s,
we can almost surely find an m and m′ that collide.)

Today, we’ll look at the following function:

h(s, m0, . . . , mℓ−1) = m0 + m1s + m2s2 + · · ·+ mℓ−1sℓ−1 + sℓ.

Claim 4.1. The function defined by

h(s, m0, . . . , mℓ−1) = m0 + m1s + m2s2 + · · ·+ mℓ−1sℓ−1 + sℓ

is a universal hash function.

Proof. We’d like to argue that for a fixed m and m′, and a random s,
the probability that there is a collision is at most ℓ

|F | .
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We’ll look at

h(x, m0, . . . , mt)− h(x, m′0, . . . , m′t) = (m0−m′0)+ · · ·+(mt−1−m′t−1)xℓ−1.

If there is a collision, this difference is 0. The probability that this
polynomial of degree at most ℓ has a zero at x is at most ℓ

|F | , since
it has at most ℓ zeroes. This means that h is indeed a universal hash
function.

Claim 4.2. The MAC given by Fk(h(s, m1, . . . , mℓ)), for the universal
hash function h given prior, is secure. (This is a slight variation on the
Carter–Wegman MAC.)

Proof. Suppose for contradiction that there exists a nu-PPT A that
breaks the security of this scheme.

Here, for appropriately generated k and s, A makes queries m 7→
Fk(hs(m)), and outputs (m∗, t∗).

We’d like to create an adversary B that either breaks the security of
the PRF, or breaks the security of the universal hash function.

B will start by sampling s ∈ F . When given the query for m1,
it computes hs(m1) and queries for Fk(hs(m1)), which it sends back
to A. If Fk was actually pseudorandom, then A is given a pseudo-
random input, and if Fk was random Rn, then A is given a random
input.

A must still be able to generate pairs (m∗, t∗) even when given a
random input, due to the security of the PRF.

B
Asample s ∈ F

hs(m) m
t

Fk

...
...

hs(m∗) (m∗, t∗)
Fk t

t ?
= t∗

Let E be the event that there exists an m, m′ ∈ L ∪ {m∗}, such
that hs(m) = h(m′). If E does not happen, then the hash function
never collides. This means that the attacker only sees random values
depending on distinct inputs, so this reduces to the case from earlier
(when the MAC is just Fk).

As such, we’d like to show that collisions in hs(·) occur with negli-
gible probability.



56 a course in theory of cryptography

To show this, suppose for contradiction that collisions actually do
occur with non-negligible probability. We then want to construct an
adversary B utilizing A that just outputs m and m′ such that when s
is sampled, hs(m) = hs(m′) with high probability.

B will pick a random i, j ∈ {1, . . . , q + 1} (here suppose i < j),
where q is the number of MAC queries. We then run A until the jth
query. Taking the ith and jth query, we then output mi and mj as our
pair of messages. We still need to entertain the queries made by A, so
we can just return random values for tags (giving the same value if it
requests it for the same message).

B
A

i, j $←− {1, . . . , q + 1}

m1

sample t1 t1
...

...
mi

sample ti ti
...

...
mj

(mi, mj)

By assumption, we know that E occurs with non-negligible proba-
bility. That is, among the queries made by A, there is a non-negligible
probability that hs(mi) = hs(mj). Since here the implementation
of B just picks out a pair of random queries from those made by A,
the pair (mi, mj) output by B also has a collision with non-negligible
probability. (In particular, with probability Pr(E)/q2.

This breaks the definition of a universal hash function, which is a
contradiction.

So far, we know how to generate tags of fixed length, and of
lengths that are a multiple of n. If we have a message that is not a
multiple of n, we could potentially just pad the input with 0’s, but
this causes an issue, as m and m∥0 have the same tag.

Instead, one solution is to put the size of the message in the first
block, and we can still put the padding at the end. This way, if the
messages differ by length, the first block will be different, and if the
messages do not differ by length, then we’re essentially just ignoring
the padding. This gives us a MAC for arbitrary-length messages.
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4.5 Authenticated Encryption Schemes

We’ve talked about confidentiality and integrity separately, but gen-
erally we want both properties—when Alice sends a message to Bob,
we’d like for any eavesdropper to be unable to recover the message,
and we’d like Bob to be able to verify that the message actually came
from Alice.

A scheme that achieves both of these conditions is called an au-
thenticated encryption scheme.

Definition 4.11 (Authenticated Encryption Scheme). A scheme Π
is an authenticated encryption scheme if it is CPA-secure, and it has
ciphertext integrity (CI).

Definition 4.12 (Ciphertext Integrity (CI)). Consider the following game
for the scheme Π = (Gen,Enc,Dec).

1: function CIA
Π(n)

2: k ← Gen(1n)

3: c∗ ← AEnc(k,·)(1n)

4: L ← the list of queries made by A
5: return (Dec(k, c∗) ̸= ⊥) ∧ (c∗ /∈ L)
6: end function

A scheme has ciphertext integrity if for all nu-PPT A, Pr(CIA
Π) is negli-

gible.

Observe that an authenticated encryption scheme is also CCA-
secure, since the CI property says that the adversary can never gen-
erate a valid ciphertext. This means that whenever an adversary
requests the decryption of a ciphertext, we can always return ⊥ (un-
less they previously requested a ciphertext for a message, and wants
to decode that ciphertext). This means that the decryption oracle is
essentially useless, and this reduces to the CPA case.

Next, we’ll construct an authenticated encryption scheme, called
“Encrypt-then-MAC”, utilizing a CPA-secure encryption scheme and
an EUF-CMA MAC scheme.
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Claim 4.3. Let Πe = (Gene , Ence , Dece) be a CPA-secure encryption
scheme, and let Πm = (Genm , Macm , Verifym) be an EUF-CMA-secure
MAC scheme.

The following scheme Π = (Gen, Enc, Dec) is an authenticated encryp-
tion scheme.

1: function Gen(1n)
2: ke ← Gene(1n)

3: km ← Genm(1n)

4: return (ke , km)

5: end function

6: function Enc((ke , km), m)
7: c ← Ence(ke , m)

8: t ← Macm(km , c)
9: return (c, t)

10: end function

11: function Dec((ke , km), (c, t), m)
12: if Verifym(km , c, t) then
13: return Dece(ke , c)
14: else
15: return ⊥
16: end if
17: end function

Proof. Suppose for contradiction that we have an adversary A that
breaks the CPA security of Π. The CPA game allows for queries of
the ciphertext for messages m, produces a pair m0 , m1, and then gets
c∗ = Enc(k, mB), and A eventually outputs b ′ to identify which
message was encrypted.

We’d like to construct another adversary B, which breaks the
CPA-security of Πe . The only difference here is the MACs, so B can
sample a km ← Genm(1n), and perform all of the MACs itself.

In particular, when A asks for the ciphertext of M, we pass it
to the oracle for Πe , and attach t ← Macm(km , c). If A is able to
distinguish between ciphertexts of M0 and M1, then we can use the
same bit to distinguish between ciphertexts for Πe .
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B
Akm ← Genm(1n)

C = Ence(ke , m)

(C, Macm(km , C))

m

c

Ence(ke , ·)

...
...

m1 , m2m1 , m2

C∗

(C∗ , Macm(km , C∗))
Ence(ke , mb)

c∗
...

...
b ′

To prove ciphertext integrity, suppose we have an adversary A
that breaks the ciphertext integrity of Π. Here, A asks for ciphertext
queries, and eventually returns a new ciphertext that is valid.

We’d like to construct an adversary B that is able to generate a
new message and a tag, given oracle access to the MAC scheme. The
construction will follow similarly to the prior proof on CPA security.

Here, our adversary B can sample ke ← Gene(1n). When A asks
for the encryption of M, B can send m = Ence(ke , M) to the MAC
oracle, and it returns c = (m, t) to A.

When A returns C∗ = (c∗ , t∗), B can also just return the same,
since the tag t∗ is being computed on c∗ .

B
Ake ← Gene(1n)

C = Ence(ke , m)

T = Macm(km , C)

(C, T)

m

c

Macm(km , ·)

...
...

(C∗ , T∗) c∗

As an example, AES-GCM is the most popular authenticated en-
cryption scheme that is used, and also has the ability to authenticate
additional data. (AES-GCM basically just appends the associated
data to the ciphertext, so that the encryption is only on the message,
but the MAC is on both the ciphertext and the associated data.) This
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scheme uses a counter-mode encryption scheme, and the MAC that
we saw, but makes this more efficient.



5
Digital Signatures

In this chapter, we will introduce the notion of a digital signature. At
an intuitive level, a digital signature scheme helps providing authen-
ticity of messages and ensuring non-repudiation. We will first define
this primitive and then construct what is called as one-time secure
digital signature scheme. An one-time digital signature satisfies a
weaker security property when compared to digital signatures. We
then introduce the concept of collision-resistant hash functions and
then use this along with a one-time secure digital signature to give a
construction of digital signature scheme.

5.1 Definition

A digital signature scheme is a tuple of three algorithms (Gen, Sign, Verify)
with the following syntax:

1. Gen(1n) → (vk, sk): On input the message length (in unary) 1n ,
Gen outputs a secret signing key sk and a public verification key
vk.

2. Sign(sk, m) → σ: On input a secret key sk and a message m of
length n, the Sign algorithm outputs a signature σ.

3. Verify(vk, m, σ) → {0, 1}: On input the verification key vk, a
message m and a signature σ, the Verify algorithm outputs either
0 or 1.

We require that the digital signature to satisfy the following cor-
rectness and security properties.

Correctness. For the correctness of the scheme, we have that ∀m ∈
{0, 1}n ,

Pr [(vk, sk) ← Gen(1n), σ ← Sign(sk, m) : Verify(vk, m, σ) = 1] = 1.

Security. Consider the following game between an adversary and a
challenger .
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1. The challenger first samples (vk, sk) ← Gen(1n). The challenger
gives vk to the adversary.

2. Signing Oracle. The adversary is now given access to a signing
oracle. When the adversary gives a query m to the oracle, it gets
back σ ← Sign(sk, m).

3. Forgery. The adversary outputs a message, signature pair (m∗ , σ∗)

where m∗ is different from the queries that adversary has made to
the signing oracle.

4. The adversary wins the game if Verify(vk, m∗ , σ∗) = 1.

We say that the digital signature scheme is secure if the probability
that the adversary wins the game is negl(n)(n).

5.2 One-time Digital Signature

An one-time digital signature has the same syntax and correctness
requirement as that of a digital signature scheme except that in the
security game the adversary is allowed to call the signing oracle only
once (hence the name one-time). We will now give a construction
of one-time signature scheme from the assumption that one-way
functions exists.

Let f : {0, 1}n → {0, 1}n be a one-way function.

• Gen(1n): On input the message length (in unary) 1n , Gen does the
following:

1. Chooses xi,b ← {0, 1}n for each i ∈ [n] and b ∈ {0, 1}.

2. Output vk =

[
f (x1,0) . . . f (xn,0)

f (x1,1) . . . f (xn,1)

]
and sk =

[
x1,0 . . . xn,0

x1,1 . . . xn,1

]
• Sign(sk, m): On input a secret key sk and a message m ∈ {0, 1}n ,

the Sign algorithm outputs a signature σ = x1,m1∥x2,m2∥ . . . ∥xn,mn .

• Verify(vk, m, σ): On input the verification key vk, a message m
and a signature σ, the Verify algorithm does the following:

1. Parse σ = x1,m1∥x2,m2∥ . . . ∥xn,mn .

2. Compute vk ′i,mi
= f (xi,mi ) for each i ∈ [n].

3. Check if for each i ∈ [n], vk ′i,mi
= vk i,mi . If all the checks pass,

output 1. Else, output 0.

Before we prove any security property, we first observe that this
scheme is completely broken if we allow the adversary to ask for
two signatures. This is because the adversary can query for the sig-
natures on 0n and 1n respectively and the adversary gets the entire
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secret key. The adversary can then use this secret key to sign on any
message and break the security.

We will now argue the one-time security of this construction. Let
A be an adversary who breaks the security of our one-time digital
signature scheme with non-negligible probability µ(n). We will
now construct an adversary B that breaks the one-wayness of f . B
receives a one-way function challenge y and does the following:

1. B chooses i∗ uniformly at random from [n] and b∗ uniformly at
random from {0, 1}.

2. It sets vk i∗ ,b∗ = y

3. For all i ∈ [n] and b ∈ {0, 1} such that (i, b) ̸= (i∗ , b∗), B
samples xi,b ← {0, 1}n . It computes vk i,b = f (xi,b).

4. It sets vk =

[
vk1,0 . . . vkn,0

vk1,1 . . . vkn,1

]
and sends vk to A.

5. A now asks for a signing query on a message m. If mi∗ = b∗ then
B aborts and outputs a special symbol abort1. Otherwise, it uses it
knowledge of xi,b for (i, b) ̸= (i∗ , b∗) to output a signature on m.

6. A outputs a valid forgery (m∗ , σ∗). If m∗i∗ = mi∗ then B aborts
and outputs a special symbol abort2. If it does not abort, then
it parses σ∗ as 1, m1∥x2,m2∥ . . . ∥xn,mn and outputs xi∗ ,b∗ as the
inverse of y.

We first note that conditioned on B not outputting abort1 or abort2,
the probability that B outputs a valid preimage of y is µ(n). Now,
probability B does not output abort1 or abort2 is 1/2n (this is be-
cause abort1 is not output with probability 1/2 and conditioned on
not outputting abort1, abort2 is not output with probability 1/n).
Thus, B outputs a valid preimage with probability µ(n)/2n. This
completes the proof of security.

We will now upgrade this one-time signature scheme to a full dig-
ital signature scheme. For this purpose, we can use either universal
one-way hash functions or collision-resistant hash functions.

5.3 Universal One-way Hash Function – UOWHF

We now introduce a universal one-way hash function (UOWHF).
UOWHF is pronounced as “woof”. UOWHFs are stronger than
universal hash functions but weaker than collision-resistant hash
functions (CRHFs).

All three primitives (universal hash functions, UOWHFs, and
CRHFs) guarantee that an attacker cannot find two colliding inputs,
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but they differ in when the attacker must output their collision. Uni-
versal hash functions require the attacker to output both colliding
inputs before seeing the hash function’s key. Collision-resistant hash
functions allow the attacker to output both colliding inputs after see-
ing the hash function’s key. UOWHFs are in between: they require
the attacker to output one colliding input before seeing the key and
allow the attacker to output the second colliding input after seeing
the key.

Universal hash functions can be constructed unconditionally, with-
out computational assumptions. UOWHFs can be constructed from
OWFs. Finally, the existence of collision-resistant hash functions is
believed to be a stronger assumption than the existence of OWFs.

We now give a formal definition of universal one-way hash func-
tions.

Definition 5.1 (Universal One-way Hash Function (UOWHF)).
Let ℓ: N → N. A collection of functions H = {hs : {0, 1}∗ →
{0, 1}ℓ(|s|)}s∈{0,1}∗ is a universal one-way hash function if:

1. (Sampling): ∃ PPT machine I that takes 1n and samples s.

2. (Easy to compute): ∃ a deterministic machine M such that M(s, x) =

hs(x).

3. (Hard to find collisions): Given a PPT attacker A, the probability that A
wins the UOWHF game (given below) is negligible.

Pr[UOW H FHA (n) = 1] = negl(n)

Where UOW H FHA is the following game:

1. (state, x) ← A(1n).

2. s ← I(1n).

3. y ← A(state, s)

4. Output 1 if x ̸= y and hs(x) = hs(y). Output 0 otherwise.

5.3.1 Construction

We construct a UOWHF from a one-way permutation in several
steps, starting with a length-restricted notion, called a (d, r)-UOWHF,
and relaxing the restriction gradually.

Definition 5.2 ((d, r)-UOWHFs). Let d, r: N → N such that d(n) >

r(n) for all n ∈ N. A (d, r)-UOWHF is a collection of functions H =

{hs : {0, 1}d(|s|) → {0, 1}r(|s|)}s∈{0,1}∗ that satisfies the conditions of a
UOWHF.
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The construction of a UOWHF from a OWP proceeds in the fol-
lowing 4 steps.
Step I: (d, d − 1)-UOWHFs. We construct a UOWHF that takes an
input of arbitrary length and truncates its length by 1.

Construction 5.1. Let f : {0, 1}d → {0, 1}d be a one-way permutation,
and a, b ∈ GF(2d). We construct Hd,d−1 = {hs : {0, 1}d →
{0, 1}d−1}s∈{0,1}∗ as follows:

hs=(a,b)(x) = cho p(a · f (x) + b)

where cho p(·) is the function that removes the first bit of a given bit string.

Claim 5.1. The Hd,d−1 given in construction 5.1 is a (d, d − 1)-UOWHF.

Proof. We prove this by contradiction. If an adversary A can break
the UOWHF security of Hd,d−1, then we can construct an adversary
B that breaks the OWP security of f .

1. B receives from its challenger a value y = f (x∗) for a uniformly
random x∗ ∈ {0, 1}d .

2. B runs A internally. A outputs the first preimage x0.

3. B computes a value of s = (a, b) such that

a · y + b = a · f (x0) + b + (1||0d−1)

In other words hs(x∗) = hs(x0). Then B sends s to A.

4. Finally, A outputs x1, which B outputs as its guess for x∗ .

Every output of h has exactly two pre-images. This is because the
mapping x → a · f (x) + b is one-to-one (as long as a ̸= 0), and the
mapping y → cho p(y) is two-to-one.

The only two preimages of hs(x∗) are x∗ and x0 (assuming that
x∗ ̸= x0, which is true with overwhelming probability). In order
to break UOWHF security, A must output a preimage x1 of hs(x0)

that is different from x0. The only correct answer that A can give is
x1 = x∗ . If x1 = x∗ , then B wins the OWP security game.

Step II: (2n, n)-UOWHFs. Now we construct length-restricted
UOWHFs that shrink their input by a factor of 2.

Construction 5.2. For any given d ∈ {n, . . . , 2n}, let Hd,d−1 =

{hd,d−1
s : {0, 1}d → {0, 1}d−1}s∈{0,1}∗ be a (d, d − 1)-UOWHF. For a

given n, we construct H2n,n = {H2n,n
s1 ···sn : {0, 1}2n → {0, 1}n}s∈{0,1}∗

as follows:

H2n,n
s1 ···sn = hn+1,n

s1
(hn+2,n+1

s2
(· · · h2n,2n−1

sn (x)) · · · )
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Claim 5.2. The H2n,n constructed in construction 5.2 is a (2n, n)-
UOWHF.

Proof. We will show that if we have an attacker A that can break the
UOWHF security of H, then we can construct an attacker B that can
break the UOWHF security of h. The intuition is that the attacker B
can randomly inject the challenge s into a random layer of H, and A
will, with non-negligible probability, find a collision in that layer.

Let H i
partial compute the first i layers of H. For any given i ∈ [n]

and x ∈ {0, 1}2n :

H i
partial (x) = h2n−i+1,2n−i

sn−i+1
(. . . h2n,2n−1

sn (x) . . . )

Formally we define the procedure of B:

1. Sample i $←− [n].

2. ∀i ′ ̸= i, sample si ′ .

3. Receive x0 from A.

4. Compute x ′0 = H i−1
partial (x0), which is the input of i-th layer.

5. Output x ′0 to the challenger.

6. Receive s from the challenger, and set si = s. Then send (s1 , . . . , sn)

to A.

7. Receive x1 from A.

8. Compute x ′1 = H i−1
partial (x1) and output it to the challenger.

If A can find two distinct inputs x0 and x1 that collide in H, then
there must exist some layer i∗ ∈ [n] such that H i∗−1

partial (x0) ̸=
H i∗−1

partial (x1), but H i∗
partial (x0) = H i∗

partial (x1). That means H i∗−1
partial (x0)

and H i∗−1
partial (x1) represent a collision in h2n−i∗+1,2n−i∗

sn−i∗+1
, the i∗-th

layer of H.
Furthermore, the index i∗ at which the collision occurs will, with

probability = 1/n, be the i-value sampled by B. This is because A
has no information about which i-value B sampled, so i is uniformly
random and independent of i∗ .

Then Pr[B finds a collision in h] ≥ 1
n · Pr[A finds a collision in H ].

If A’s success probability is non-negligible, then so is B’s success
probability.

Step III: UOWHF that shrinks any input by a factor of two. Let us
define a (2∗, ∗)-UOWHF to be a hash function that takes inputs x of
arbitrary length, outputs a string that is half the length of the input,
and satisfies the conditions of a UOWHF.
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Construction 5.3 (a (2∗, ∗)-UOWHF). For a given n, let H2n,n = {hs :
{0, 1}2n → {0, 1}n}s∈{0,1}∗ be a (2n, n) − UOW H F. Then we con-
struct a function Hs : {0, 1}2∗ → {0, 1}∗ as follows.

For any x ∈ {0, 1}∗ , let us split it into chunks: x = x1 || . . . ||xt where
|xi | = 2n for i = 1, . . . , t − 1, and 0 ≤ |xt | ≤ 2n. Then

let Hs(x) = hs(x1) · · · hs(xt102n−|xt |−1)

Finally, let H2∗,∗ = {Hs}s∈{0,1}∗ .

Note that we reuse the same s for every component of the output
hs(xi), which is an important gain in efficiency.

Claim 5.3. H2∗,∗ is a (2∗, ∗)-UOWHF.

Proof. If there is an adversary A that can create a collision, x0 and
x1, in H, then we can construct an adversary B that can create a
collision in h. The construction of B is as follows:

1. Run A until it outputs x0. Compute t = ⌈ |x
0 |

2n ⌉.

2. Sample i $←− [t]. Then output x ′0 = x0
i to the challenger.

3. Receive seed s from the challenger and send s to A.

4. Run A until it outputs x1. Then output x ′1 = x1
i .

If A breaks the UOWHF security of H, then with non-negligible
probability, it outputs an x0 and x1 such that x0 ̸= x1 but hs(x0

i ′ ) =

hs(x1
i ′ ) for every i ′ ∈ [t]. If x0 ̸= x1, then there is at least one

component i∗ ∈ [t] for which x0
i∗ ̸= x1

i∗ . With probability ≥ 1
t , B will

sample an i ∈ [t] such that x0
i ̸= x1

i .

Step IV: Full-Fledged UOWHFs.

Construction 5.4 ((a UOWHF)). Let H2∗,∗ = {hs : {0, 1}∗ →
{0, 1}∗}s∈{0,1}∗ be a (2∗, ∗)-UOWHF. Then for any (s1 , · · · , sn) ∈
{0, 1}∗ , any n, t ∈ N and x ∈ {0, 1}2t ·n , we define

Hs1 ,...,sn (x) = (t, hst (· · · (hs2 (hs1 (x))) · · · ))

Also let H = {Hs}s∈{0,1}∗ .

Claim 5.4. H is a secure UOWHF.

The proof is similar to the one in Step II.
We show how to use the arbitrary-length WOOF we constructed

to boost this one-time, fixed-length digital signature scheme into a
one-time, arbitrary-length digital signature scheme.
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5.3.2 Removing Length-Restriction from One-Time Digital Signatures

Let (Genℓ , Signℓ , Verifyℓ) be a length-restricted one-time digital sig-
nature for messages of length ℓ(n). Let hs : {0, 1}∗ → {0, 1}n be a
WOOF. First we will review an insecure first attempt at a construction
for ℓ(n) = n:

• GenBAD(1n): Run (pkℓ , skℓ) ← Genℓ(1n), s ← I(1n). Output
((pkℓ , s), skℓ).

• SignBAD(sk = skℓ , m): Output Signℓ(skℓ , hs(m)).

• VerifyBAD(pk = (pkℓ , s), m, σ): Output Verifyℓ(pkℓ , hs(m), σ).

Notice that this construction does not work because the seed for
the WOOF is revealed before the message is chosen, in which case
WOOF security does not apply.

To avoid this, we can use the following construction for ℓ(n) =

k(n) + n where k(n) is the length of the seed produced by I(1n):

• Gen(1n): Run (pkℓ , skℓ) ← Genℓ(1n). Output (pkℓ , skℓ).

• Sign(sk = skℓ , m): Run s ← I(1n) and σℓ ← Signℓ(skℓ , s||hs(m)).
Output (σℓ , s).

• Verify(pk = pkℓ , m, σ = (σℓ , s)): Output Verifyℓ(pkℓ , s||hs(m), σℓ).

Note that now the seed is chosen after the message. We will give a
proof sketch of the security for this construction. Assume for con-
tradiction that we have a nu-PPT adversary A which succeeds with
non-negligible probability at the digital signature security game
for (Gen, Sign, Verify). We will now construct a nu-PPT adversary
B who succeeds with non-negligible probability at the digital sig-
nature security game for (Genℓ , Signℓ , Verifyℓ), a contradiction. B
receives pkℓ from its challenger and passes this along to A. When
A queries the signing oracle with message m, B runs s ← I(1n),
computes mℓ = s||hs(m), queries its signing oracle with message mℓ

to receive σℓ and returns σ = (s, σℓ) to A. Finally, when A returns
m∗ , σ∗ = (s∗ , σ∗ℓ ), B outputs m∗ℓ = s∗ ||hs∗ (m∗), σ∗ℓ .

Since we have replicated the expected input distribution for A,
it will succeed with non-negligible probability. Notice that B will
succeed when A does as long as m∗ℓ ̸= mℓ . In analyzing the success
probability of B we have two cases to consider based on whether
s∗ = s. Notice that A must have non-negligible success either when
s∗ = s or when s∗ ̸= s or both. If Pr[s∗ ̸= s ∧ A succeeds] is non-
negligible, then B also succeeds with non-negligible probability since
m∗ℓ = s∗ ||hs∗ (m∗) ̸= s||hs(m) = mℓ in this case. Now assume that
Pr[s∗ = s ∧ A succeeds] is non-negligible. When A succeeds in this
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case, it must have found m∗ ̸= m, and so hs∗ (m∗) = hs(m) with only
negligible probability because otherwise WOOF security is broken.
Thus with non-negligible probability m∗ℓ ̸= mℓ and B succeeds as
well. Therefore either way B succeeds in the digital signature game
against (Genℓ , Signℓ , Verifyℓ) with non-negligible probability.

5.4 Multiple-Message Digital Signatures

Now we will show how to covert this one-time, no-length restric-
tion digital signature scheme (Gen, Sign, Verify) into a ef-ema no-
length restriction digital signature scheme by utilizing a pseudoran-
dom function PRF. For each α ∈ {ϵ} ∪ {0, 1}≤n , let pkα , skα =

Gen(1n ; PRFs(α10 . . . 0)) such that |α10 . . . 0| = n + 1 (i.e. Gen is
run with randomness determined by the PRF on an input specified
by α). We will use these to make a tree of keys so that the keys used
for each message will be distinct with high probability, so WOOF
security will continue to apply each time the scheme is used. Note
that whenever Sign is called, we require the WOOF to be run with a
deterministic seed sW

α = PRFs′ (α10 . . . 0). This way paths through
the tree will deterministically map to the corresponding signatures.
The construction is as follows:

• GEN(1n): Output (pkϵ , s ← {0, 1}n), namely the root public key
and the seed for the PRF so the rest of the keys can be generated.

• SIGN(sk, m):

1. Draw a random path through the key tree r ← {0, 1}n .

2. Now use the secret key at each level to sign its children’s public
keys and continue to do this along the random path until a
leaf is hit, i.e. iteratively sign the random path and its co-path.
Namely, for each i = 0, 1, . . . , n − 1, let αi = r1r2 · · · ri ,
mi = pkαi ||0 ||pkαi ||1, and σi = Sign(skαi , mi).

3. Let σn = Sign(skr , m).

4. Output Σ = (r, m0 , σ0 , . . . , mn−1 , σn−1 , σn).

• VERIFY(pk, m, Σ = (r, σ0 , . . . , σn−1 , σn)): Use r and the mi

to determine pkαi and for each i ∈ [n] run Verify(pkαi , mi , σi),
accepting if all of those do.

The idea is that because the root pkϵ is trusted and the correspond-
ing secret keys of one level are used to validate the pk of the level
below, trust is maintained down the path and the ultimate pkr can be
trusted to be used to check the signature on m itself.

We will now give a proof sketch for the security of this construc-
tion. Assume for contradiction that we have a nu-PPT adversary A
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which succeeds with non-negligible probability at the digital signa-
ture security game for (GEN, SIGN, VERIFY). Let A’s interaction
with this security game be called Hybrid H0. First we will consider
the hybrid H1 where the PRF is replaced by a truly random function.
A’s success probability in H1 is still some non-negligible ϵ(n) due to
PRF security. Now we will consider the hybrid H2 where if the ran-
domness returned by any two of the signing oracle queries is equal,
i.e. r j = r j′ for some distinct j, j ′ ∈ [q], then A aborts. Notice that the
probability of this happening is only q2/2n , a negligible amount, so
A’s success probability ϵ(n) − q2/2n remains non-negligible. Thus
going forward we can assume that the randomness r j used by the
oracle to sign each query m j is distinct.

Now notice that either A outputs a message-signature pair (M∗ , Σ∗)
which uses r∗ = r j for some j ∈ [q] or r∗ ̸= r j for all j ∈ [q]. We will
give some intuition for what happens in each of these cases. In the
first case, since signatures in this scheme are deterministic, to succeed
A’s signatures must be the same as Σ j’s along the path r∗ = r j until
doing a forgery at the leaf, breaking the (Gen, Sign, Verify) scheme
for M∗ which is distinct from all of the m j queries. In the second
case, A goes along a path r∗ ̸= r j , so at the first node which diverges
from all r j it must forge a signature that verifies with an honest pub-
lic key from the level above, breaking the (Gen, Sign, Verify) scheme
for the corresponding α∗i which is distinct from all of the other α

j
i

that were used to answer queries.
This can be formalized by constructing a nu-PPT adversary B for

the one-time digital signature security game of (Gen, Sign, Verify)
who takes the pk it’s been given and guesses which query A forges
for, using its pk and one-time oracle to provide a signature for that
query and otherwise answering honestly using self-generated keys.
This degrades B’s probability of success by ϵ(n)/q which is still
non-negligible.

Next, after introducing collision resistant hash functions, we will
see a different, though closely related, alternate construction for
multiple-message digital signatures.

5.5 Collision Resistant Hash Functions

As the name suggests, collision resistant hash function family is a set
of hash functions H such that for a function h chosen randomly from
the family, it is computationally hard to find two different inputs
x, x ′ such that h(x) = h(x ′). We now give a formal definition.
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5.5.1 Definition of a family of CRHF

A set of function ensembles

{Hn = {hi : Dn → Rn}i∈ In }n

where |Dn | < |Rn | is a family of collision resistant hash function
ensemble if there exists efficient algorithms (Sampler, Eval) with the
following syntax:

1. Sampler(1n) → i : On input 1n , Sampler outputs an index i ∈ In .

2. Eval(i, x) = hi(x) : On input i and x ∈ Dn , Eval algorithm
outputs hi(x).

3. ∀ PPT A we have

Pr[i ← Sampler(1n), (x, x ′) ← A(1n , i) : hi(x) = hi(x ′) ∧ x ̸= x ′ ] ≤ negl(n)(n)

5.5.2 Collision Resistant Hash functions from Discrete Log

We will now give a construction of collision resistant hash functions
from the discrete log assumption. We first recall the discrete log
assumption:

Definition 5.3 (Discrete-Log Assumption). We say that the discrete-
log assumption holds for the group ensemble G = {Gn}n∈N, if for every
non-uniform PPT algorithm A we have that

µA(n) := Pr
x←|Gn |

[A(g, gx ) = x]

is a negligible function.

We now give a construction of collision resistant hash functions.

• Sampler(1n) : On input 1n , the sampler does the following:

1. It chooses x ← |Gn |.
2. It computes h = gx .

3. It outputs (g, h).

• Eval((g, h), (r, s)) : On input (g, h) and two elements (r, s) ∈
|Gn |, Eval outputs gr hs .

We now argue that this construction is collision resistant. As-
sume for the sake of contradiction that an adversary gives a collision
(r1 , s1) ̸= (r2 , s2). We will now use this to compute the discrete
logarithm of h. We first observe that:

r1 + xs1 = r2 + xs2

(r1 − r2) = x(s2 − s1)
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We infer that s2 ̸= s1. Otherwise, we get that r1 = r2 and hence,
(r1 , s1) = (r2 , s2). Thus, we can compute x = r1−r2

s1−s2
and hence the

discrete logarithm of h is computable.

5.6 CRHF-Based Multiple-Message Digital Signature

We now explain how to combine collision-resistant hash functions
and one-time signatures to get a signature scheme for multiple mes-
sages. We first construct an intermediate primitive wherein we will
still have the same security property as that of one-time signature
but we would be able to sign messages longer than the length of the
public-key.1 1 Note that in the one-time signature

scheme that we constructed earlier, the
length of message that can be signed is
same as the length of the public-key.5.6.1 One-time Signature Scheme for Long Messages

We first observe that the CRHF family H that we constructed earlier
compresses 2n bits to n bits (also called as 2-1 CRHF). We will now
give an extension that compresses an arbitrary long string to n bits
using a 2-1 CRHF.

Merkle-Damgard CRHF. The sampler for this CRHF is same as that
of 2-1 CRHF. Let h be the sampled hash function. To hash a string
x, we do the following. Let x be a string of length m where m is an
arbitrary polynomial in n. We will assume that m = kn (for some k)
or otherwise, we can pad x to this length. We will partition the string
x into k blocks of length n each. For simplicity, we will assume that k
is a perfect power of 2 or we will again pad x appropriately. We will
view these k-blocks as the leaves of a complete binary tree of depth
ℓ = log2 k. Each intermediate node is associated with a bit string y
of length at most ℓ and the root is associated with the empty string.
We will assign a tag ∈ {0, 1}n to each node in the tree. The i-th leaf
is assigned tagi equal to the i-block of the string x. Each intermediate
node y is assigned a tagy = h(tagy∥0∥tagy∥1). The output of the hash
function is set to be the tag value of the root. Notice that if there is a
collision for this CRHF then there are exists one intermediate node y
such that for two different values tagy∥0, tagy∥1 and tag′y∥0, tag′y∥1 we
have, h(tagy∥0, tagy∥1) = tag′y∥0, tag′y∥1. This implies that there is a
collision for h.

Construction. We will now use the Merkle-Damgard CRHF and
the one-time signature scheme that we constructed earlier to get a
one-time signature scheme for signing longer messages. The main
idea is simple: we will sample a (sk, vk) for signing n-bit messages
and to sign a longer message, we will first hash it using the Merkle-
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Damgard hash function to n-bits and then sign on the hash value.
The security of the construction follows directly from the security of
the one-time signature scheme since the CRHF is collision-resistant.

5.6.2 Signature Scheme for Multiple Messages

We will now describe the construction of signature scheme for multi-
ple messages. Let (Gen′,Sign′,Verify′) be a one-time signature scheme
for signing longer messages.

1. Gen(1n) : Run Gen′(1n) using to obtain sk, vk. Sample a PRF key K.
The signing key is (sk, K) and the verification key is vk.

2. Sign((sk, K), m) : To sign a message m, do the following:

(a) Parse m as m1m2 . . . mℓ where each mi ∈ {0, 1}.
(b) Set sk0 = sk and m0 = ϵ (where ϵ is the empty string).

(c) For each i ∈ [ℓ] do:

i. Evaluate PRF(m1∥ . . . ∥mi−1∥0) and PRF(m1∥ . . . ∥mi−1∥1) to
obtain r0 and r1 respectively. Run Gen′(1n) using r0 and r1 as
the randomness to obtain (ski,0, vki,1) and (ski,1, vki,1).

ii. Set σi = Sign(ski−1,mi−1 , vki,0∥vki,1)

iii. If i = ℓ, then set σℓ+1 = Sign(ski,mi , m).

(d) Output σ = (σ1, . . . , σℓ+1) along with all the verification keys as
the signature.

3. Verify(vk, σ, m): Check if all the signatures in σ are valid.

To prove security, we will first use the security of the PRF to re-
place the outputs with random strings. We will then use the security
of the one-time signature scheme to argue that the adversary cannot
mount an existential forgery.

5.7 Trapdoor Permutations and RSA

Definition 5.4 (Trapdoor Permutation). A function family { fs : Ds →
Ds}s∈{0,1}∗ is a one-way trapdoor permutation if there exists PPT
I, D, F, F−1 such that

• (s, τ)← I(1n) produces the seed and trapdoor,

• D(s) outputs a uniformly random element of Ds,

• ∀s ∈ I(1n), x ∈ Ds, F(s, x) = fs(x),

• ∀(s, τ) ∈ I(1n), y ∈ Ds, F−1(τ, y) = f−1
s (x), and

• fs is one-way.
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The RSA trapdoor permutation construction is as follows:

• IRSA(1n) → (s = (N, e), τ = (N, d) for N = PQ for 2n−1 ≤ P <

Q ≤ 2n such that d = e−1 mod ϕ(n) for e < N which is coprime to
ϕ(n) = (P− 1)(Q− 1). Let Ds = {1, . . . , N}.

• FRSA(s, x) = xe mod N.

• F−1
RSA(τ, x) = yd mod N.

Unfortunately, under the assumption that factoring is hard, we still
don’t have a security proof for the RSA trapdoor permutation in
the plain model. However, we will see a proof in what’s called the
“random oracle model” next.

5.8 Random Oracle Model

We looked at RSA-FDH in the last section, and in this section we’ll
continue on and provide some semblance of a security analysis of the
scheme.

As a note, collision resistance of the hash function isn’t quite
enough for the security of the RSA-FDH scheme. In particular, if we
can find three messages m1, m2, m3 such that H(m1) · H(m2) = H(m3)

(mod N) (this isn’t protected against with collision resistance), then
we can break the scheme, assuming that we use the RSA trapdoor
function. Here, we’d have

σ1σ2 = f−1(H(m1)) · f−1(H(m2))

= H(m1)
d H(m2)

d (mod N)

= (H(m1)H(m2))
d (mod N)

= H(m3)
d (mod N)

Ideally, we’d like to have a proof of the security of this scheme, but
nobody has been able to come up with one yet. Instead, we can only
hope to find some kind of evidence for the security of the scheme.

This evidence comes from the random oracle model (ROM), other-
wise known as the random oracle methodology.

Suppose we’re given a scheme ΠH = (AH , BH , CH , . . .), where calls
to the hash function H is explicit. (Some functions may not call the
hash function, but that’s okay.)

We’d like to perform some analysis on these schemes, even though
we may not fully understand the properties of the hash function—
we’d like to abstract it out. To do this, we instead prove the security
of ΠO = (AO, BO, CO, . . .), where the hash function is replaced with
an oracle O for a truly random function.
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This oracle assumption is a very strong one, and is perhaps not the
most indicative of the security of the original scheme—there are cases
where the scheme ΠO under an oracle O is secure, but replacing the
oracle with any instantiation breaks the security of the scheme.

When we’re trying to prove security of ΠO, we’ll look at an adver-
sary AO, which has access to O. Here, observe that we can provide
the answers to the oracle queries—we just need to find a contradic-
tion to the existence of the function A, regardless of what the oracle
O does.

Note here that the adversary A in this case is forced to explicitly
call the oracle for its hash function queries—the fact that we can see
these calls is called observability. In the standard model, we can’t
actually see the queries that the adversary makes, since it just runs
the predefined hash function itself.

Another property is called programmability: since we’re working
with a random oracle, the only thing that matters is that the output
of the oracle looks uniformly random. This means that we can re-
place a uniform output x of the oracle with f (x), for some one-way
permutation f . This allows us to control some secret parameter that
affects the output distribution of the oracle O. In the standard model,
we don’t have programmability—we again just have a fixed hash
function that we can’t change after the fact.

Theorem 5.1. RSA-FDH is EUF-CMA secure in the ROM, assuming
{ fs}s is a secure family of trapdoor permutations.

Proof. Suppose we have an adversary A in this model.
The first thing it is given is a public key pk = s. The adversary

then gets to make signature queries: m 7→ f−1
t (O(m)). At the very

end, it must output a forged signature (m∗, σ∗). This adversary is
also allowed to make separate hash queries to the random oracle:
m 7→ O(m).

A

pk = s

m
f−1
t (O(m))

Signature queries

(m∗, σ∗)

m
O(m)

Hash queries to O

WLOG, suppose that for every message m that AO queries for a
signature, it has already made a query for the same message to the
hashing oracle. (Otherwise, we can simply make a wrapper around
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AO that does this.) We can also assume WLOG that when the ad-
versary outputs (m∗, σ∗), it has also made the hashing query O(m∗).
Let’s call this hybrid H0.

For the hybrid H1, we’ll abort the machine if for any m, m′ in the
hash queries, we have O(m) = O(m′), essentially removing all col-
lisions from the oracle. This happens with negligible probability
(q2/2n), so this hybrid is still indistinguishable from H0.

Next, we’ll construct an adversary B using A, and inverts the trap-
door permutation. In particular, given (s, y∗), where y∗ = f−1(x∗),
the goal is to output x∗.

Suppose A makes qs signing queries and qh hashing queries.
We pass in s as pk. B first samples an i∗ ← {1, . . . , qh}. We then

set the output of the ith hash query to y∗. In particular, we have
O(mqi∗ ) = y∗. If the adversary happens to call a signing query on i∗,
we’ll abort.

We still need to specify what happens on all other queries, and we
want to make sure that we can respond with a signature query on all
of these other queries. For i ̸= i∗, we sample x ∈ Ds, and compute
y = fs(x). On the ith hashing query, we then set O(mi) = y. If the
adversary later requests a signature on the same mi, then we output x
for the signing query. (This is because f−1(O(mi)) = f−1(y) = x.)

In particular, the adversary must have called the hashing query
for its output m∗, and with some probability, this is the i∗th query, in
which case the message m∗ is our inverse x∗.

Analyzing the probabilities, we have that

Pr(B outputs f−1(x∗)) = Pr(A successful∧ no sign query on mi∗ ∧m∗ = mq∗i
)

= ε×
(

1− 1
qh

)qs

× 1
qh

≈ ε

qh

which is non-negligible, assuming A is successful with non-negligible
probability.

We’ll now talk about a different scheme and analyze its security
under the random oracle model.

This scheme is called the Schnorr signature scheme. Given a group G
of prime order q and a hash function H : {0, 1}∗ → Zq, we define

• Gen(1n) = (pk = gx, sk = x ← Zq)

• Sign(sk, m):

k← Zq

r = gk

h = H(m∥r)
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s = k + hx
σ = (h, s)

• Verify(pk, m, σ):

output h ?
= H(m∥ gs

pkh )

Theorem 5.2. The Schnorr signature scheme is EUF-CMA secure in the
ROM, assuming the discrete log problem is hard.

Proof. The adversary AO gets a public key pk = gx, can make signing
queries m 7→ Sign(x, m) and hashing queries (m, z) 7→ O(m∥z), for
z ∈ G. A then returns a forgery (m∗, σ∗).

A

pk = gx

m
σ = Sign(x, m)

Signature queries

(m∗, σ∗)

(m, z)
O(m∥z)

Hash queries to O

WLOG, we can assume that m∗∥r∗ is in the list of hash queries
(where r∗ was the value computed in the output signature σ∗).

We’ll define a modified signing algorithm as follows:

function Sign’(sk, m)
h, s ∈ Zq uniformly

gk ← gs

ghx = gs

pkh

h = H(m∥gk)

output (h, s)
end function

The main idea here is to provide a random signature, consistent with
the definition of Sign, so that Verify will still succeed.

We’ll then define a wrapper A′O, which performs these modified
signing queries by itself, since it no longer requires the secret key x.
As such, A′O only makes hashing queries, and produces (m∗, σ∗). In
particular, A′ depends on pk, q1, h1, . . . , qH , hH , but all of the queries
q1, . . . , qH are deterministic depending on the previous hash out-
put (or dependent on pk in the case of q1). This means that A′ can
actually be thought of as a function of

A′(pk, h1, h2, . . . , hH).

The main insight that we’ll use is that we can run A′ until the (i∗ −
1)th query, and on the i∗th query, we run the adversary twice, on
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two different possible responses: hi∗ and h′i∗ . These two executions
share the first i∗ − 1 hashing queries, and both are perfectly valid
executions of the adversary. We’ll use these two executions to break
the discrete log problem.

Let us define B that breaks the discrete log problem, given as
input (g, gx). Here, we’ll let gx be the public key.

In response to hashing queries, if A′ asks for the hash of m∥z, we
respond with a random value (or the same value as before if queried
multiple times) as O(m∥z).

Now, we’d like to be able to find x, utilizing the behavior of A′.
At the i∗th query, we run the adversary twice, with hi∗ as the hash in
the first execution, and h′i∗ as the hash in the second execution. In the
first execution, we would have gotten queries qi∗ , qi∗+1, . . . , qh, and
outputted (m∗, σ∗). In the second execution we would have gotten
queries q′i∗ , q′i∗+1, . . . , q′h, and outputted (m′∗, σ′∗).

Now, in the i∗th query, note that s = k + hx in the first execution,
and s′ = k + h′x in the second execution. Crucially, the value of k is
the same here, since the query utilizes the same value of r, and we
can solve for x = s−s′

h−h′ .
The probability that the adversary A′ succeeds in producing a

forgery while utilizing i∗ is µ(n) = ε(n)/qh. For ease, let us also
define the two halves of the input to A′ as α = (pk, h1, . . . , hi∗−1) and
β = (hi∗ , . . . , hqh). We then define the “good set” as

S =

{
α | Pr

β
(A′(α, β) outputs a forgery) ≥ µ(n)

2

}
.

We can also see that Pr(α ∈ S) ≥ µ(n)
2 ; to see why, suppose by

contradiction Pr(α ∈ S) < µ(n)
2 . Here, we have

Pr(A′ succeeds) = Pr(A′ succeeds | α ∈ S)Pr(α ∈ S) + Pr(A′ succeeds | x /∈ S)Pr(α /∈ S)

< 1 · µ(n)
2

+
µ(n)

2
· 1 < µ(n)

which is a contradiction.
The probability that B succeeds is thus

Pr(α ∈ S)Pr(A′(α, β) succeeds | α ∈ S)Pr(A′(α, β′) succeeds | α ∈ S) ≥
(

µ(n)
2

)3

,

due to the definition of S from earlier.
This means that in total, our probability of success is

Pr(B succeeds) ≥ ε3(n)
8q3

h
,

which is non-negligible if A′ succeeds with non-negligible probabil-
ity, giving us our contradiction.
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5.9 BLS Signatures

Bilinear Pairings. Recall that we used prime order groups G to
build the Schnorr signature scheme. Today we will introduce an-
other mathematical object, pairing friendly groups, which support
a new “bilinear pairing” operation defined as follows. Let G1, G2

and GT be groups of prime order p. We define a bilinear pairing
e : G1 × G2 → GT to be an efficiently computable map that satisfies the
following properties:

• Bilinearity: For all a, b ∈ Zp and g1 ∈ G1, g2 ∈ G2, we have
e(ga

1, gb
2) = e(g1, g2)

ab.

• Non-degenerate: e(g1, g2) ̸= 1GT .

Observe that in any group, by using the group operation, one can
compute “additions” of the scalar exponents, but in pairing friendly
groups one can additionally compute one “multiplication” of the
scalar exponents.

Note that while a pairing provides us with additional functional-
ity, it also means that we need to reevaluate any hardness assump-
tions that we have made. Consider for instance the decisional Diffie-
Hellman (DDH) assumption which states that it is hard to distinguish
between (g, ga, gb, gab) and (g, ga, gb, gc) for random a, b, c ∈ Zp.
In the presence of a bilinear pairing, natural variants of the DDH
assumption are no longer hard such as distinguishing between
(g1, g2, ga

1, gb
2, gab

1 ) and (g1, g2, ga
1, gb

2, gc
1). Instead, we will define new

assumptions that are conjectured to be hard even given a bilinear
pairing.

co-CDH assumption. Let G1, G2 be groups of prime order with gen-
erators g1 and g2 and let e : G1 × G2 → GT be an efficiently com-
putable bilinear pairing. The co-CDH assumption states that for all
non-uniform PPT adversaries A:

Pr
[
A(g1, g2, ga

1, gb
1, gb

2)→ gab
1 | a, b←$ Zp

]
≤ negl(n)

BLS Signature scheme. We are now ready to describe the BLS signa-
ture scheme 2. 2 Dan Boneh, Ben Lynn, and Hovav

Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, Ad-
vances in Cryptology – ASIACRYPT 2001,
volume 2248 of Lecture Notes in Com-
puter Science, pages 514–532, Gold
Coast, Australia, December 9–13, 2001.
Springer, Berlin, Heidelberg, Germany

• Gen(1λ): Sample sk←$ Zp and set vk← gsk2 . Output (vk, sk).

• Sign(sk, m): Given a message m ∈ {0, 1}∗, output σ ← H(m)sk,
where H : {0, 1}∗ → G1 is a hash function that maps arbitrary
strings to elements in G1.

• Verify(vk, m, σ): Output e(σ, g2)
?
= e(H(m), vk).
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Correctness. Correctness is easy to see by plugging in explicit expres-

sions for the signature and verification key – e(σ = H(m)sk, g2)
?
=

e(H(m), vk = gsk2 ).

Security. If H is modelled as a random oracle, we will show that
if there exists an adversary A that can forge a signature with non-
negligible probability, then we can use A to build B that can solve the
co-CDH problem with non-negligible probability.

Theorem 5.3. The BLS signature scheme is is existentially unforgeable
under chosen message attacks assuming the co-CDH problem is hard in the
random oracle model.

Proof. We will use a similar strategy as in the proof of RSA full do-
main hash. Let A be a non-uniform PPT adversary that can forge a
signature with non-negligible probability. We will use A to build a
non-uniform PPT adversary B that can solve the co-CDH problem
with non-negligible probability. B works as follows:

• B receives (g1, g2, ga
1, gb

1, gb
2) as input and is tasked with computing

gab
1 .

• B now runs the EUF-CMA game with A where A makes signing
queries and in the end outputs a forgery (m∗, σ∗), where m∗ has
not been previously queried.

• At the start of the protocol, B sets vk = gb
1 and sends it to A. For

all random oracle queries H(m), A samples r ←$ Zp and sets
H(m) = gr

1. When A asks for a signature on mi, B samples ri ←$

Zp and sets H(mi) = gri
1 (if the query has not been previously

made). It then responds with σi = H(mi)
b = (gb

1)
ri . However, for a

randomly chosen index i∗ (out of the maximum number of queries
A can make), B sets H(mi∗) = ga

1. Now, if A asks for a signature
on the chosen mi∗ , B aborts and restarts the EUF-CMA game. In
the ends, A outputs a forgery with non-negligible probability. And
since there are only a polynomial number of queries, A outputs
a forgery on mi∗ with non-negligible probability. In which case B
outputs σi∗ as its output in the co-CDH game.

We now analyze the probability that B solves the co-CDH prob-
lem.

Pr[B → gab
1 ] = Pr[A outputs forgery∧mi∗ was not queried∧ forgery on mi∗ ]

≥ ϵ×
(

1− 1
qh

)qs

× 1
qh

which is non-negligible. Thus, by contradiction, the BLS signature
scheme is existentially unforgeable under chosen message attacks
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assuming the co-CDH problem is hard in the random oracle model.

Exercises

Exercise 5.1. Digital signature schemes can be made determin-
istic. Given a digital signature scheme (Gen,Sign,Verify) for which
Sign is probabilistic, provide a construction of a digital signature scheme
(Gen′, Sign′,Verify′) where Sign′ is deterministic.





6
Public Key Encryption

Public key encryption allows two parties to communicate with each
other with the guarantees of privacy for their messages against an
eavesdropper who monitors all communication between the two
parties. Recall that we were able to build Digital Signatures and
Symmetric Key Encryption, from the weakest building block in cryp-
tography – one-way functions. However, there are lower bounds 1 1 Russell Impagliazzo and Steven

Rudich. Limits on the provable conse-
quences of one-way permutations. In
21st Annual ACM Symposium on Theory
of Computing, pages 44–61, Seattle, WA,
USA, May 15–17, 1989. ACM Press

suggesting that public key encryption cannot be built from one-way
functions alone. Instead, we will build public key encryption from
more structured assumptions (which are a stronger assumption in the
sense that they imply one-way functions).

6.1 Definitions

Definition 6.1 (Public Key Encryption). A public key encryption scheme
is a tuple of three algorithms (Gen, Enc,Dec) defined as follows:

• Gen(1n)→ (pk, sk): outputs a public key and secret key (pk, sk).

• Enc(pk, m) → c: Takes as input the public key and a message m and out-
puts a ciphertext c.

• Dec(sk, c) → m: Takes as input a secret key sk and ciphertext c, and out-
put a message m.

Definition 6.2 (Perfect Correctness). A public key encryption scheme
(Gen, Enc,Dec) is said to be correct if for all n ∈ N, (pk, sk) ← Gen(1n),
m ∈ {0, 1}∗, it holds that

Pr[Dec(sk,Enc(pk, m)) = m] = 1

The above definition can be relaxed to allow for a negligible probabil-
ity of error during decryption and still remain meaningful.

We now define two different notions of security for public key
encryption schemes – IND-CPA and IND-CCA security.
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Definition 6.3 (IND-CPA Security). A public key encryption scheme
(Gen, Enc,Dec) is said to be IND-CPA-secure if for all non-uniform PPT
A, ∣∣∣∣Pr[ExpCPA(n)A = 1]− 1

2

∣∣∣∣ ≤ negl(n),

where ExpCPA(n)A is defined as follows:

• (pk, sk)← Gen(1n).

• b←$ {0, 1}.

• A(pk)→ (m0, m1, st).

• c∗ ← Enc(pk, mb).

• A(c∗, st)→ b′.

• Output 1 if b = b′ and 0 otherwise.

Definition 6.4 (IND-CCA Security). A public key encryption scheme
(Gen, Enc,Dec) is said to be IND-CCA-secure if for all non-uniform PPT
A, ∣∣∣∣Pr[ExpCCA(n)A = 1]− 1

2

∣∣∣∣ ≤ negl(n),

where ExpCCA(n)A is defined as follows:

• (pk, sk)← Gen(1n).

• b←$ {0, 1}.

• ADec(sk)(pk)→ (m0, m1, st).

• c∗ ← Enc(pk, mb).

• ADec(sk)(c∗, st) → b′, where the decryption oracle now returns ⊥ when
queried on c∗.

• Output 1 if b = b′ and 0 otherwise.
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6.2 Trapdoor Functions

Definition 6.5 (Trapdoor Function). A trapdoor function is a tuple of
four algorithms (Gen, f , f−1, D) defined as follows:

• Gen(1n)→ (s, t): outputs an index s and corresponding trapdoor t.

• D(s): Outputs a description of the domain of the trapdoor function.

• f (s, x) → y: Takes as input an index s and a element x from the domain
of the trapdoor function and outputs an element y.

• f−1(t, y) → x: Takes as input a trapdoor t and an element y from the
range of the trapdoor function and outputs an element x.

We require the following properties:

• Correctness: For all n ∈ N, (s, t) ← Gen(1n), x ∈ D(s), it holds that
Pr[ f−1(t, f (s, x)) ̸= x] = negl(n). Note that if we demand that f is in-
jective, then this property is automatically satisfied.

• One-wayness: For all non-uniform PPT A, we have Pr[A(s, y) → x |
(s, t)← Gen(1n), x ←$ D(s), y← f (s, x)] = negl(n).

6.3 Public Key Encryption from Trapdoor Functions

Given a trapdoor function, we can build a public key encryption
scheme as follows:

• Gen(1n): Run TDF.Gen(1n) to obtain (s, t). Set pk = s and sk = t.

• Enc(pk, m): Sample x ←$ D(s) and compute y ← f (s, x). Sample
r ←$ {0, 1}|x| and output c = (y, r, m⊕ HC(x, r)), where HC is the
hardness concentration bit, as defined in Section 2.4.

• Dec(sk, c): Parse c = (y, r, z) and output m = z⊕HC( f−1(t, y), r).

Proof Sketch. To show that the above scheme is CPA secure, observe
that the message space {0, 1}. So the only two messages the distin-
guisher can pick are m0 = 0 and m1 = 1. Now if the distinguisher
can indeed distinguish between encryptions of m0 and m1, then the
same distinguisher can be used to identify the hardness concentration
bit. By using a similar strategy as in the proof of Theorem 2.3, we can
recover the pre-image x of the trapdoor function. Thus, violating the
one-wayness of the trapdoor function.
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6.4 Public Key Encryption from Computational Diffie-Hellman

Although we have a construction of public key encryption from trap-
door functions, we did not know how to build trapdoor functions
from some very natural assumptions such as CDH for quite some
time. It was only recently that Garg and Hajiabadi 2 showed that 2 Sanjam Garg and Mohammad Haji-

abadi. Trapdoor functions from the
computational Diffie-Hellman assump-
tion. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, Part II, volume
10992 of Lecture Notes in Computer Sci-
ence, pages 362–391, Santa Barbara, CA,
USA, August 19–23, 2018. Springer,
Cham, Switzerland

this was indeed possible. Given the non-trivial nature of the con-
struction, we will not cover it in this course and instead provide a
direct construction of public key encryption from the Computational
Diffie-Hellman (CDH) assumption.

Let G be a prime order group of order p with generator g, where
the CDH problem is assumed to be hard.

• Gen(1n): Sample sk←$ Zp and set pk← gsk. Output (pk, sk).

• Enc(pk, m): Sample α ←$ Zp, and set y ← gα, k ← pkα. Now
sample r ←$ {0, 1}|B| and output c = (y, r, m⊕HC(k, r)).

• Dec(sk, c): Parse c = (y, r, z) and compute k ← ysk. Output
m = z⊕HC(k, r).

Proof Sketch. The proof of security is similar to the proof of security
for the trapdoor function based public key encryption scheme. The
only difference is that we now we reduce the hardness of the CDH
problem.

6.5 Improving Efficiency.

The above construction can only be used to encrypt a single bit and
results in a ciphertext of size O(poly(n)). Encrypting a message with
M bits, results in a ciphertext of size O(M · poly(n)). Encryption and
decryption also requires O(M) public-key operations (evaluating
the TDF/group operations) and we would like to bring this down to
O(1). The idea is to extract a symmetric key instead of a single bit by
replacing the hardness concentration function with a random oracle.
We can then use the symmetric key to encrypt long message with
constant rate.

The construction is almost identical except that we replace the
hardness concentration bit with a random oracle to extract a symmet-
ric key that can be used to encrypt a long message. Given a trapdoor
function the construction works as follows:

• Gen(1n): Run TDF.Gen(1n) to obtain (s, t). Set pk = s and sk = t.

• Enc(pk, m): Sample x ←$ D(s) and compute y ← f (s, x). Encrypt
m using a symmetric encryption scheme with key H(x) as z ←
Sym.Enc(H(x), m). Output c = (y, z).
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• Dec(sk, c): Parse c = (y, z) and compute x ← f−1(t, y). Decrypt
z using the symmetric encryption scheme with key H(x) as m ←
z⊕ Sym.Dec(H(x), z). Output m.

The same idea can be extended to the CDH based public key encryp-
tion scheme.

Theorem 6.1. The construction above is IND-CPA secure in the random
oracle model assuming f is a trapdoor function.

Proof. Given an adversary A that can win the IND-CPA game, with
non-negligible advantage, we construct an adversary B that can break
either the one-wayness of the trapdoor function or the security of the
with non-negligible advantage.

Let s, y∗ be the challenge given to B(). B provides A with pk :− s.
A outputs (m0, m1) and in response B computes a challenge cipher-
text as follows: Sample b ←$ {0, 1}, a random key k∗ ←$ {0, 1}|B| and
set z∗ ← Sym.Enc(k∗, mb). B also lazily samples responses to random
oracle queries except if a query q satisfies f (s, q) = y∗, then B sets
H(q) = k∗, and outputs q as the inverse image of y∗ under f .

We now argue that A queries the random oracle on an element q
such that f (s, q) = y∗, with non-negligible probability. If this never
occurs, then A never receives receive k∗ but is able to distinguish
symmetric-key encryptions of m0 from encryptions of m1 with non-
negligible probability. This violates the security of the symmetric
encryption scheme. Thus, A must query the random oracle on an
element q such that f (s, q) = y∗ with non-negligible probability and
hence B succeeds with non-negligible probability.

6.6 Fujisaki-Okamoto Transformation

6.7 Post-Quantum Public Key Encryption

The public-key encryption schemes discussed so far, rely on the
difficulty of problems like factorization or discrete logarithms. In
1994, Peter Shor showed that these problems can be solved efficiently
on a quantum computer 3. Even though we do not have large-scale 3 Peter W. Shor. Algorithms for quan-

tum computation: Discrete logarithms
and factoring. In 35th Annual Sympo-
sium on Foundations of Computer Science,
pages 124–134, Santa Fe, NM, USA,
November 20–22, 1994. IEEE Computer
Society Press

quantum computers capable of breaking current encryption schemes,
there are two reasons to begin the transition of public-key encryption
to quantum-resistant schemes:

• Encrypted messages captured today can be stored and decrypted
in the future when a large scale quantum computer is available.
This is commonly referred to as the "harvest now, decrypt later"
risk.
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• Transition to new encryption schemes is a slow process and it is
important to start the transition well before large scale quantum
computers are available.

The national institute of standards and technology (NIST) opened
a call for post-quantum public-key encryption and signature schemes
in 2016. In Nov 2019, it received 59 submissions for public-key en-
cryption and 23 submissions for digital signatures. In July 2022,
NIST announced the first batch of winners for public-key encryp-
tion and digital signatures. In Aug 2024, the final standard for these
schemes was published and they are now making their way into
existing infrastructure. There was one winner (CRYSTALS-Kyber)
for public-key encryption (based on lattices) and three winners for
digital signatures (two based on lattices and one based on hash func-
tions).

LWE
[14] LWE-SKE

LWE-PKE
[14]

LWE + LHL

Compact LWE-PKE
[10]

LWE + LWE

RLWE
[11]

RLWE-PKE
[12]

RLWE + RLWE

MLWE
[4, 9]

CRYSTALS-Kyber
MLWE + MLWE

Figure 6.1: A roadmap of lattice-based
public-key encryption schemes ending
in the standardized CRYSTALS-Kyber
scheme.

Definition 6.6 (Learning With Errors Assumption (Search)). Let
m, n, q ∈ N and χ be a distribution over Zq. The Learning With Errors
(LWE) LWEn,m,q,χ problem is defined as follows:

Pr[A(A, b)→ s | s←$ Zn
q , A←$ Zm×n

q , b = A · s + e] ≤ negl(n)

Definition 6.7 (Learning With Errors (Decision)). Let m, n, q ∈ N and
χ be a distribution over Zq. The Learning With Errors (LWE) LWEn,m,q,χ

problem is defined as follows:

|Pr[A(A, b)→ 1 | s←$ Zn
q , A←$ Zm×n

q , b = A · s + e]

− Pr[A(A, b)→ 1 | s←$ Zn
q , A←$ Zm×n

q , b←$ Zm
q ]| ≤ negl(n)

The Learning With Errors assumption is commonly referred to
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as a Lattice based assumption because there is a reduction from
Search/Decision LWE to a “worst-case” lattice problem.

The above assumptions have been stated with respect to some ab-
stract distribution χ over Zq. But what do we actually choose this
distribution to be? In the extreme case of χ = 0, the LWE problem
is trivial as one can simply use Gaussian Elimination. In the other
extreme if χ is uniform over Zq, then the LWE problem is informa-
tion theoretically hard (but not very useful for cryptography). We
will be interested in the intermediate case where χ is a small distribu-
tion over Zq, centered around 0. For eg: χ is a uniform distribution
over [−B, B] for some B ≪ q/2. This will allow us to do build inter-
esting cryptographic primitives like public key encryption and sig-
nature schemes. For provable reductions to lattice problems, we set
stddev(χ) = Ω(

√
n). However, there is a gap between the best known

attacks on LWE and the best known reductions to lattice problems.
As a result, much more aggressive parameters are used in practice,
chosen based on the best known attacks. Typical parameters for LWE
are n = 512, q = 3329, supp(χ) = [−3, 3], and m = 768. 4 provides a 4 Martin R. Albrecht, Rachel Player, and

Sam Scott. On the concrete hardness of
learning with errors. Cryptology ePrint
Archive, Report 2015/046, 2015

lattice estimator https://github.com/malb/lattice-estimator that
can be used to estimate the number of bits of security provided by a
given set of LWE parameters.

6.7.1 LWE→ LWE-SKE

As a first step, we will see how to build a symmetric key encryption
scheme from LWE.

• Gen: Sample s←$ Zn
q and output sk = s.

• Enc(sk, µ): Sample a ←$ Zn
q , e ←$ χ, and compute b ← ⟨a, s⟩+ e.

Output c = (c0 = a, c1 = b + ⌊ q
2⌋µ).

• Dec(sk, c): Parse c = (c0, c1) and compute m← Decode(c1− ⟨c0, s⟩),
where Decode(µ̂) → {0, 1} takes a value from Zq and outputs 0 if
µ̂ ∈ [⌊−q

4 ⌋, ⌊
q
4⌋] and 1 otherwise.

Theorem 6.2. If the decisional variant of LWEn,1,q,χ is hard, then the above
scheme is an IND-CPA secure symmetric key encryption scheme.

Proof. Let the ciphertext c = (c0, c1). Then µ̂ = c1−⟨c0, s⟩ = b+ ⌊ q
2⌋−

⟨a, s⟩ = ⌊ q
2⌋µ + e. Upon applying the Decode function, we recover

the message µ if |e| < ⌊ q
4⌋. One can choose the noise distribution

χ such that Pr[|e| ≥ ⌊ q
4⌋] ≤ negl(n), to obtain a symmetric key

encryption scheme with a small correctness error. Alternatively, one
can also set χ such that Pr[|e| ≥ ⌊ q

4⌋] = 0 to obtain a perfectly correct
symmetric key encryption scheme. Security reduces to hardness of
the decisional LWEn,1,q,χ problem.

https://github.com/malb/lattice-estimator
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6.7.2 How to build a public key encryption scheme from LWE?

Our first observation is that LWE samples offer a limited amount
of homomorphism. Given LWE samples (a1, b1 = ⟨a1, s⟩ + e1) and
(a2, b2 = ⟨a2, s⟩+ e2), one can add them up to get (a1 + a2, b1 + b2 =

⟨a1 + a2, s⟩+ (e1 + e2)). Observe that as long as e1 + e2 is small, we
can still build useful cryptography as done in the symmetric key
encryption scheme above.

Now to build public key encryption, we delegate the power to
create LWE samples, without revealing the secret s. We achieve this
by setting the public key to be many symmetric key encryptions of 0.
The scheme below was originally proposed by Regev in 2005

5. 5 Oded Regev. On lattices, learning
with errors, random linear codes, and
cryptography. In Harold N. Gabow
and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing,
pages 84–93, Baltimore, MA, USA,
May 22–24, 2005. ACM Press

• Gen: Sample s←$ Zn
q , A←$ Zm×n

q , e←$ χm, b← As + e and output
(pk = (A, b), sk = s).

• Enc(pk, µ): Sample u ←$ {0, 1}m. Output c = (c0 = A⊺u, c1 =

b⊺u + ⌊ q
2⌋µ).

• Dec(sk, c): Output Decode(c1 − ⟨c0, s⟩).

Observe that b is actually just m encryptions of 0. Moreover, m
influences the size of the public key and we would like to make this
as small as possible. The exact parameter will be chosen based on
what we can actually prove security for.

Proof. For correctness observe that as before c1 − ⟨c0, s⟩ = b⊺u +

⌊ q
2⌋µ− ⟨A⊺u, s⟩ = u⊺e + ⌊ q

. 2⌋µ. Decode will recover µ if |u⊺e| < ⌊ q
4⌋,

and one can choose χ to ensure this with high probability.
For security, we describe a sequence of hybrids starting from the

public-key IND-CPA game, where the challenger receives (µ0, µ1),
and responds with an encryption of µ0. We then end in a hybrid
where the challenger responds with an encryption of µ1, while show-
ing that consecutive hybrids are indistinguishable.

• Hybrid 0: This is the original public-key IND-CPA game, where
the challenger samples (pk, sk) as described in the protocol and
receives (µ0, µ1) from A. The challenger responds with an encryp-
tion of µ0 and A outputs a guess b′.

• Hybrid 1: This hybrid is identical to Hybrid 0, except that the
challenger sets pk = (A ←$ Zm×n

q , b ←$ Zm
q ). From the hard-

ness of the decisional LWEn,m,q,χ problem, these two hybrids are
computationally indistinguishable.

• Hybrid 2: In this hybrid we replace the ciphertext with a uni-
formly random string c ∈ Zn

p ×Zp. We now argue that this hybrid
is statistically indistinguishable from the previous hybrid. Let
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u ←$ {0, 1}m, and γ ←$ Zn
p. Then EC∈Zn×m

q
[SD(Cu, γ)] ≤ 1

2

√
qn

2m . If
we set m = n log q + 2λ, then the statistical distance is negligible in
the security parameter.

To prove the above we will use the leftover hash lemma. Let
pc(w) = Pru←${0,1}m [Cu = w]. Then,

∑
w∈Zn

q

pc(w)2 = Pr
u0,u1←${0,1}m

[Cu0 = Cu1] =
1

2m +EC[ Pr
u0 ̸=u1

[C(u0−u1) = 0]] =
1

2m +
1
qn

Thus, EC∈Zn×m
q

[SD(Cu, γ)] = 1
2 EC[∑w |pc(w)− 1

qn |] ≤ 1
2
√

qnEC

[√
∑w(pc(w)− 1

qn )2
]
,

where the inequality follows from Cauchy-Schwarz. Next, using
Jensen’s inequality we have

1
2
√

qnEC

[√
∑
w
(pc(w)− 1

qn )
2

]
≤ 1

2
√

qn

√√√√EC

[
∑
w
(pc(w)2 − 1

qn )

]
=

1
2

√
qn

2m

The remaining hybrids are symmetric to end in the IND-CPA game
with challenge response set to an encryption of µ1.

6.7.3 Improving Efficiency

It is worthwhile asking whether the parameter m can be made
smaller. Recall that when using the leftover hash lemma we needed
to set m = n log q + 2λ but we got a statistical guarantee of indistin-
guishability. This overkill in some sense because we still rely on the
LWE assumption in a different hybrid. We can then ask the question
of whether it’s possible to improve efficiency and obtain compact LWE
public-key encryption if we relied on computational hardness instead
of a statistical guarantee.

This was the approach taken in 6, where they used the hardness 6 Richard Lindner and Chris Peik-
ert. Better key sizes (and attacks) for
LWE-based encryption. In Aggelos
Kiayias, editor, Topics in Cryptology – CT-
RSA 2011, volume 6558 of Lecture Notes
in Computer Science, pages 319–339, San
Francisco, CA, USA, February 14–18,
2011. Springer, Berlin, Heidelberg,
Germany

of LWE instead of the leftover hash lemma to switch ciphertexts to
uniformly random strings in the proof of IND-CPA security. The
scheme is essentially identical to the previous construction except,
the secret key is also sampled from the error distribution instead
of uniformly over the entire field. This is necessary for correctness.
But we are no longer working with LWE samples as the secret key
is no longer uniform. These new type of instance are referred to
as Hermite normal form LWE instances. We will later show that
distinguishing HNF-LWE samples from a uniform distribution is just
as hard distinguishing LWE samples from the uniform distribution.
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Definition 6.8 (HNF-LWE). Let m, n, q ∈ N and χ be a distribution
over Zq. The Learning With Errors (LWE) LWEn,m,q,χ problem is defined as
follows:

|Pr[A(A, b)→ 1 | s←$ χn
q , A←$ Zm×n

q , b = A · s + e]

− Pr[A(A, b)→ 1 | A←$ Zm×n
q , b←$ Zm

q ]| ≤ negl(n)

Lemma 6.1 (LWEn,q,χ,m ≤ HNF− LWEn,q,χ,m−n).

Proof. Parse A and b as:

A :

[
A1

A2

]
b :

[
b1

b2

]
=

[
A1s + e1

A2s + e2

]

and bbort if A1 is not invertible. This happens with probability ≤
0.91. Next, provide (

Ã := A2 · A−1
1

b̃ := −A2 · A−1
1 · b1 + b2

)

to the HNF-LWE solver. Note that b̃ simplifies to

b̃ = A2 A−1
1 (A1s + e1) + A2s + e2

= A2s− A2 A−1
1 e1 + A2s + e2

= A2e1 + e2

which is actually an HNF-LWE sample. Hence, if the HNF-LWE
solver succeeds with non-negligible probability, then the LWE solver
also succeeds with non-negligible probability.

Construction 6.1 (Compact LWE-PKE [10]).

• Gen: Sample s ←$ χn
q , A ←$ Zn×n

q , e ←$ χn, b ← As + e and output
(pk = (A, b), sk = s).

• Enc(pk, µ): Sample u ←$ Zn
q , e0 ←$ χn and e1 ←$ χ. Output c = (c0 =

A⊺u + e0, c1 = b⊺u + e1 + ⌊ q
2⌋µ).

• Dec(sk, c): Output Decode(c1 − ⟨c0, s⟩).

The proof of security follows a similar strategy as earlier, except
when replacing the ciphertext with a uniformly random string, we
use the hardness of HNF-LWE.

6.7.4 Ring-LWE

From the same motivation as above, we would like to improve the ef-
ficiency of our scheme by decreasing the number of random elements
we sample (to get the matrix A). Note that the methods we used
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above require sampling O(n2) random elements to form the random
matrix.

• Instead, we could replace A with a structured (cyclic) matrix
where each row is a cyclic shift of the previous row. This only re-
quires O(n) random elements to be sampled. However, this turns
out to not be secure.
Assuming that q = 1 mod n, we can write this in polynomial
form as a(x) · s(x) + e(x) = b(x) mod (xn − 1). The assumption
on q is made so that number theoretic transforms can be used to
efficiently multiply polynomials. Since xn − 1 is divisible by x− 1,
we have the additional relation a(1) · s(1) + e(1) = b(1) where both
s(1) and e(1) are small. This allows us to construct a distinguisher.

• To prevent this, we would like to choose a irreducible polynomial
instead, say, xn + 1. Using negacyclic matrices instead (and q =

1 mod 2n), we get a similar relation a(x) · s(x) + e(x) = b(x)
mod (xn + 1). However, this does not have the same issue as
before. This forms the basis of the Ring-LWE assumption. Other
cyclotomic polynomials can also be used and we work in the ring
Zq[x]/ < xn + 1 >.
This construction was shown to be secure in 7. 7 Vadim Lyubashevsky, Chris Peikert,

and Oded Regev. On ideal lattices
and learning with errors over rings.
In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, vol-
ume 6110 of Lecture Notes in Computer
Science, pages 1–23, French Riviera,
May 30 – June 3, 2010. Springer, Berlin,
Heidelberg, Germany

Definition 6.9 (HNF-RLWE). Let n be the ring dimension, q be the modu-
lus, and χ be a distribution over Rq where Rq = Zq[x]/ < xn + 1 >. The
HNF-RLWE problem is defined as follows:

a(x) $←− Rq

s(x) $←− χ

e(x) $←− χ

b(x)← a(x) · s(x) + e(x)

Distinguish (a(x), b(x)) from (a(x), b′(x)) where b′(x) $←− Rq

• RLWE has similar worst-case to average-case reductions to hard
lattice problems as LWE. However, these hard problems are on
"ideal lattices" which are structured lattices.

Worst-case “ideal lattice” problems ≤ Search RLWE ≤ Decision RLWE

• RLWE ≤ HNF-RLWE

• On the plus side, state of the art attacks on RLWE do not exploit
the ring structure and instead treat it as a LWE instance.

We can also build a public-key encryption scheme from RLWE,
similar to the compact LWE-PKE scheme. The security proof is also
similar.
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Construction 6.2 (RLWE-PKE).

• Gen: Sample s(x) ←$ χq, a(x) ←$ Rq, e(x) ←$ χ, b(x) ← a(x) · s(x) +
e(x) and output (pk = (a(x), b(x)), sk = s(x)).

• Enc(pk, µ): Sample u(x) ←$ Rq, e0(x) ←$ χ and e1(x) ←$ χ. Output
c = (c0 = a(x) · u(x) + e0(x), c1 = b(x) · u(x) + e1(x) + ⌊ q

2⌋µ).

• Dec(sk, (c0, c1)): Output Decode(c1(x)− c0(x) · s(x)).

LWE RLWE
Public Key Size (n2 + n) log q 2n log q
Ciphertext Size (n + 1) log q 2n log q
Message Length 1 n

Computation Cost O(n2) Õ(n)

Table 6.1: Comparison of LWE and
RLWE

6.7.5 Module LWE

8, along with the first implementable FHE scheme, introduced the 8 Zvika Brakerski, Craig Gentry, and
Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without
bootstrapping. In Shafi Goldwasser,
editor, ITCS 2012: 3rd Innovations in
Theoretical Computer Science, pages 309–
325, Cambridge, MA, USA, January 8–
10, 2012. Association for Computing
Machinery

Module-LWE assumption. This is a generalization of LWE and
RLWE, and was initially created for notational purposes to avoid
having to write two different definitions. Setting parameters to cer-
tain values returns LWE or RLWE. However, there are middle cases
that are not covered by LWE or RLWE.

The Module-LWE assumption is defined as follows:

Definition 6.10 (Module-LWE). Let n be the degree, q be the modulus,
and χ be a distribution over Rq. Additionally, let m be the number of sam-
ples and k be the dimension. The Module-LWE problem is defined as follows:

A $←− Rm×k
q

s $←− χk

e $←− χm

b← A · s + e

Distinguish (A, b) from (A, b′) where b′ $←− Rm
q

Note that this is the same as LWE when k = 1 and RLWE when
n = 1.

• Worst-case “rank-k" lattice problems ≤ Search Module-LWE ≤
Decision Module-LWE

• Module-LWE ≤ HNF-Module-LWE 9 9 Adeline Langlois and Damien Stehlé.
Worst-case to average-case reductions
for module lattices. Designs, Codes and
Cryptography, 75(3):565–599, 2015

• Why use MLWE? - Efficiency and Flexibility.
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– Powers of two are sparse, we would need to jump from n = 512
to n = 1024 for instance.

– New Hope is another NIST candidate based on RLWE. It has
parameters n = 1024, q = 12289 while Kyber has n = 256,
q = 3329. The ring LWE condition requires q = 1 mod 2n, and
hence the larger q.

• Other engineering considerations for Kyber:

– The Fujisaki-Okamoto transform is used to obtain CCA security.

– Note that Kyber’s prime does not satisfy q = 1 mod 2n, and
they only get incomplete NTT speedups.

– The matrix A can be compressed using a random oracle or
hash.

– The error distribution is restricted to [−3, 3]. In addition, for
easier sampling, instead of using a uniform distribution, they
use a centered binomial distribution (sampling from this only
requires sampling some bits and adding them).

– Another optimization for proof size is to drop the last bit of the
ciphertext.

• Finally, Kyber gets a public key size of 800 bytes, a ciphertext size
of 768 bytes, and decryption failure probability of 2−139.

6.8 Cramer-Shoup Construction

The Cramer-Shoup cryptosystem is a public-key encryption scheme
that achieves security against adaptive chosen ciphertext attacks
(CCA2). To understand its significance, let’s first examine the ElGa-
mal encryption scheme and its limitations.

6.8.1 Background: ElGamal Encryption

ElGamal encryption is a simple and elegant public-key system based
on the Diffie-Hellman key exchange. The scheme operates as follows:

• Gen(1n):

Select prime q where |q| = n
Choose generator g of group G of order q
Sample x ← Zq randomly
Compute h = gx

Output (pk = (g, h), sk = x)

• Enc(pk, m ∈ G):

Sample r ← Zq randomly
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Compute c1 = gr

Compute c2 = m · hr

Output (c1, c2)

• Dec(sk, (c1, c2)):

Compute m = c2/cx
1

Output m

Proof of Correctness:

c2/cx
1 = (m · hr)/(gr)x

= (m · (gx)r)/(gr)x

= m · gxr/grx

= m

However, ElGamal is malleable, meaning an adversary can modify
a ciphertext to create a related ciphertext. Given a ciphertext (c1, c2)

encrypting message m, an adversary can create (c1, k · c2) which will
decrypt to k · m for any k. This malleability makes ElGamal insecure
against chosen-ciphertext attacks.

6.8.2 Hash Proof Systems

To address these limitations, we introduce Hash Proof Systems
(HPS), a powerful tool for constructing CCA-secure encryption
schemes.

6.8.3 Formal Definition

Let X be a set and L ⊂ X be a language defined by:

L = {x ∈ X | ∃w s.t. (x, w) ∈ R}

where R is a binary relation and w is called a witness.
A Hash Proof System consists of three algorithms:

• KGen(1n): Generates key pair (pk, sk)

• Hsk : X→ Π (private evaluation)

• Hpk : L×W→ Π (public evaluation)

6.8.4 Key Properties

1. Correctness: For all (x, w) ∈ R:

Hsk(x) = Hpk(x, w)
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Proof: This follows from the construction where both evaluations
compute the same mathematical operation, but Hpk requires a
witness while Hsk uses the secret key.

2. Smoothness: For all x ̸∈ L:

{pk,Hsk(x)} s≈ {pk, UΠ}

where UΠ is uniform over Π.

Proof Sketch: This property follows from the DDH assumption in
our concrete construction. When x ̸∈ L, the hash value appears
random to any computationally bounded adversary.

3. Universal Property: For all x ∈ L and y1, . . . yt ∈ L:

{pk,Hsk(x), {Hpk(yi)}i}
s≈ {pk, UΠ, {Hsk(yi)}i}

6.8.5 Concrete DDH-based Construction

Let’s construct a specific HPS based on the Decision Diffie-Hellman
(DDH) assumption:

• Let G be a cyclic group of prime order q

• Fix generators g1, g2 ∈ G

• Define X = G2

• Define L = {(h1, h2) ∈ X | ∃r ∈ Zq : h1 = gr
1 and h2 = gr

2}

The construction:

KGen(1n) : Sample d1, d2 ← Zq

Output (pk = (gd1
1 gd2

2 ), sk = (d1, d2))

Hsk(x = (h1, h2)) = hd1
1 hd2

2

Hpk(x = (h1, h2), w = r) = pkr

Proof of Correctness: For (x, w) ∈ R where x = (gr
1, gr

2):

Hsk(x) = (gr
1)

d1(gr
2)

d2

= grd1
1 grd2

2

= (gd1
1 gd2

2 )r

= pkr

= Hpk(x, w)
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6.8.6 Basic Scheme and Its Limitations

Let’s analyze our first attempt at constructing a secure encryption
scheme using HPS:
Gen(1n):

• (pk, sk)← KGen(1n)

Enc(pk, m ∈ G):

1. Sample x ← L along with witness w

2. Compute e = Hpk(x, w) ·m

3. Output (x, e)

Dec(sk, (x, e)):

• Output e/Hsk(x)

6.8.7 Security Analysis of Basic Scheme

While this construction achieves CPA security through the following
hybrid argument:

1. H0: Real encryption game

2. H1: Replace e = Hsk(x) ·m (using sk instead of pk)

• This is identical to H0 because x ∈ L and by HPS correctness

• Formally: For any (x, w) ∈ R, Hpk(x, w) = Hsk(x)

3. H2: Replace x ← X \L

• Indistinguishable by property 2 of HPS

• Adversary cannot tell if x is sampled from L or X \L

4. H3: Replace e with uniform random element

• Indistinguishable by smoothness property of HPS

• When x ̸∈ L, Hsk(x) is statistically close to uniform

However, this scheme fails to achieve CCA-2 security. Here’s a
concrete attack:

Theorem 6.3 (CCA-2 Attack on Basic Scheme). The basic HPS con-
struction is not CCA-2 secure.

Proof. Consider the following attack in the CCA-2 game:

1. Adversary receives challenge ciphertext (x∗, e∗) for message mb

2. Adversary creates modified ciphertext (x∗, k · e∗) for some k ∈ G
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3. Adversary submits modified ciphertext to decryption oracle

4. Let m′ be the decrypted result. Then:

m′ = (k · e∗)/Hsk(x∗)

= k · (e∗/Hsk(x∗))

= k ·mb

5. Since k is known, adversary can recover mb and win the CCA-2
game

6.8.8 The Need for Ciphertext Integrity

The key insight is that we need to prevent ciphertext manipulation.
The full Cramer-Shoup construction addresses this by:

1. Adding a second HPS instance (H′) that acts as a "proof of well-
formedness"

2. Using a collision-resistant hash function to bind all components
together

3. Verifying the proof π before decryption

The second HPS instance must satisfy a stronger security property
called "2-smoothness":

Definition 6.11 (2-Smoothness). For all x1, x2 ∈ L and t1, t2 ∈ T with
t1 ̸= t2:

{pk,Hsk(x1, t1),Hsk(x2, t2)}
s≈ {pk, UΠ, UΠ}

6.8.9 CCA-2 Secure Construction

The final Cramer-Shoup construction achieves CCA-2 security by
combining two HPS instances with a collision-resistant hash function:

6.8.10 The Scheme

Gen(1n):

(pk, sk)← KGen(1n)

(pk′, sk′)← KGen(1n)

Output ((pk, pk′), (sk, sk′))

Enc(pk, m):

Sample x ← L with witness w
e = Hpk(x, w) ·m
t = CRHF(x, e)
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π = H′pk(x, w, t)
Output (x, e, π)

Dec(sk, (x, e, π)):

if π ̸= H′sk(x) then
Output ⊥

end if
Output e/Hsk(x)

6.8.11 Final Security Theorem

Theorem 6.4. If H is a 1-smooth HPS, H′ is a 2-smooth HPS, and CRHF
is a collision-resistant hash function, then the scheme is CCA-2 secure.

Proof. We prove security through a sequence of hybrid games, show-
ing each transition is indistinguishable to a PPT adversary. Let A be
any PPT adversary in the CCA2 game.

First, we establish a crucial lemma:

Lemma 6.2 (Key Soundness Lemma). For any ciphertext decryption
query (x, e, π) that A makes, if Dec((sk, sk′), (x, e, π)) ̸=⊥ then x ∈ L

except with negligible probability.

Proof of Lemma. Suppose for contradiction that x /∈ L but the decryp-
tion doesn’t return ⊥. This means:

π = H′sk′(x, CRHF(x, e))

By the 2-smoothness property of H′, when x /∈ L, the value
H′sk′(x, t) is statistically indistinguishable from random, even given
pk′. Therefore, the probability that A can generate such a π is at most
1/|Π|, which is negligible.

Now we proceed with the hybrid games:

• G0: The real CCA2 game.

• G1: Same as G0, but the challenger computes the challenge cipher-
text’s e∗ component using sk instead of pk:

e∗ = Hsk(x∗) ·mb

instead of
e∗ = Hpk(x∗, w) ·mb

By the correctness property of HPS, these are identical when x∗ ∈
L, so:

Pr[G0 = 1] = Pr[G1 = 1]
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• G2: Same as G1, but now the challenger samples x∗ ← X \ L

instead of from L.

By the hardness of distinguishing elements in L from elements in
X \ L (which follows from the DDH assumption in our concrete
construction):

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ ϵDDH

• G3: Same as G2, but replace Hsk(x∗) with a uniform random value
u← Π in computing e∗:

e∗ = u ·mb

By the smoothness property of H, since x∗ /∈ L:

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ ϵsmooth

• G4: Same as G3, but replace e∗ with a uniform random value in G.

Since u is uniform in Π and independent of mb, e∗ is uniform in G
and independent of mb, so:

Pr[G3 = 1] = Pr[G4 = 1]

In G4, the challenge ciphertext is independent of mb, so A has no
advantage. Therefore:

AdvCCA2

A ≤ ϵDDH + ϵsmooth

To complete the proof, we need to show that the decryption oracle
queries in all games can be answered properly. For any decryption
query (x, e, π):

1. If (x, e) = (x∗, e∗) but π ̸= π∗: By 2-smoothness of H′, generating
a valid π is infeasible.

2. If (x, e) ̸= (x∗, e∗) but CRHF(x, e) = CRHF(x∗, e∗): This breaks
collision resistance of CRHF.

3. If CRHF(x, e) ̸= CRHF(x∗, e∗): By 2-smoothness of H′, any π

that verifies must correspond to a witness w such that (x, w) ∈ R,
meaning x ∈ L. Therefore, the decryption oracle can be simulated
properly.

Thus, all hybrid games are indistinguishable to A, and the scheme
is CCA2-secure.





7
Advanced Encryption Schemes

7.1 Identity-Based Encryption

We introduce Bilinear Maps and two of its applications: NIKE, Non-
Interactive Key Exchange; and IBE, Identity Based Encryption.

7.2 Diffie-Hellman Key Exchange

Alice Bob

private a private b

public A public B
A B

send at the same time

a,B → K b,A → K

Eve
Figure 7.1: Diffie-Hellman Key Ex-
change

Fig 7.1 illustrates Diffie-Hellman key exchange. Alice and Bob
each has a private key (a and b respectively), and they want to build
a shared key for symmetric encryption communication. They can
only communicate over a insecure link, which is eavesdropped by
Eve. So Alice generates a public key A and Bob generates a public
key B, and they send their public key to each other at the same time.
Then Alice generates the shared key K from a and B, and likewise,
Bob generates the shared key K from b and A. And we have ∀ PPT
Eve, Pr[k = Eve(A, B)] = neg(k), where k is the length of a.

7.2.1 Discussion 1

Assume that ∀(g, p), and a1, b1
$← Z∗p, and a2, b2, r $← Z∗p, we have

(ga1 , gb1 , ga1b1)
c≃ (ga2 , gb2 , gr). How to apply this to Diffie-Hellman

Key Exchange?
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Make A = ga, B = gb, K = Ab = gab, and K = Ba = gab.

7.2.2 Discussion 2

How does Diffie-Hellman Key Exchange imply Public Key Encryp-
tion?

Alice pk = A, sk = a, Enc(pk, m ∈ {0, 1}).
Bob b, r ← Z∗p (gb, mAb + (1−m)gr)

Alice Dec(sk, (c1, c2))

ca
1

?
= c2

7.3 Bilinear Maps

Definition 7.1. Bilinear Maps
Bilinear Maps is (G, P, GT , g, e), where e is an efficient function

G× G → GT such that

• if g is generator of G, then e(g, g) is the generator of GT .

• ∀a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab = e(gb, ga).

7.3.1 Discussion 1

How does Bilinear Maps apply to Diffie-Hellman?
Make A = ga, B = gb, and T = gab, then Diffie-Hellman has

e(A, B) = e(g, T).

7.4 Tripartite Diffie-Hellman

Fig 7.2 illustrates Tripartite Diffie-Hellman key exchange. a, b, and c
are private key of Alice, Bob, and Carol, respectively. They use ga, gb,
gc as public key, and the shared key K = e(g, g)abc. Formally, we have

a, b, c $← Z∗p, r $← Z∗p

A = ga, B = gb, C = gc

K = e(g, g)abc

7.5 IBE: Identity-Based Encryption

When two parties communicate secure messages through a public
key infrastructure, they need to go through a time-consuming and
error-prone process to get each other’s key and verify each other’s
identity through a Certificate Authority. Identity-based cryptography
(IBC) seeks to reduce these barriers by requiring no preparation on
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A B

Alice

private a

public A

a,B,C → K

Bob

private b

public B

b,A,C → K

Eve

Carol

private c

public C

c,A,B → K

C

Figure 7.2: Tripartite Diffie-Hellman
Key Exchange

the part of the message recipient, therefore saving the initial round
trip. Identity based encryption can also be used to construct CCA-
secure public key encryption and digital signatures.

IBE contains four steps: Setup, KeyGen, Enc, and Dec. We illustrate
it in Figure 7.3. IBE relies on a trusted third party called Private Key
Generator(PKG). In first step, PKG gets a Master Public Key (mpk)
and Master Signing Key (msk) from Gen(1n). Then a user with an
ID (in this example, “Mike”), sends his ID to the PKG. The PKG
generates the Signing Key of Mike with KeyGen(msk, id) ans sends
it back. Another user, Alice, wants to send an encrypted message to
Mike. She only has mpk and Mike’s ID. So she encrypts the message
with c = Enc(mpk, id = Mike, m), and sends the encrypted message
c to Mike. Mike decodes c with m = Dec(c, skMike). Notice that Alice
never need to know Mike’s public key. She only needs to remember
MPK and other people’s IDs.

②
iii.

 SK ID
=S

K Mike

Key Authority
①. (MPK, MSK) ← Setup(1k)

Mike

②
i. I

D=M
ike

②ii. SKID ← KeyGen(MSK, ID)

Alice wants to send a 
message to Mike, and 
she only knows MPK.

 ③i. c=Enc(MPK, ID=Mike, m)

 ③ii. c ④. m=Dec(c, SKMike)

Alice

Figure 7.3: Identity-Based Encryption

Then we define IBE formally,
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Definition 7.2 (Identity-Based Encryption). An identity based en-
cryption scheme Eid = (G, K, E, D) is a tuple of four efficient algorithms:
a setup algorithm G, a key generation algorithm K, an encryption
algorithm E, and a decryption algorithm D.

• G is a probabilistic algorithm invoked as (mpk, msk) $← G(1n), where
mpk is called the master public key and msk is called the master se-
cret key for the IBE scheme.

• K is a probabilistic algorithm invoked as skid
$← K(msk, id), where msk

is the master secret key (as output by S), id ∈ ID is an identity, and skid

is a secret key for id.

• E is a probabilistic algorithm invoked as c $← E(mpk, id, m).

• D is a deterministic algorithm invoked as m ← D(skid, c). Here m is ei-
ther a message or a special reject value ⊥ (distinct from all messages).

As usual, we define the correctness of IBE to be the decryption
undoes encryption, formally we have

Definition 7.3 (Correctness of IBE). ∀n, id, m, we have

Pr


(mpk, msk)← G(1n),

skid ← K(msk, ID),

c← E(mpk, id, m),

m← D(skid, c)

 = 1− negl(n)

Next we define the security of IBE scheme. The basic security
definition considers an adversary who obtains the secret keys for a
number of identities of its choice. The adversary should not be able
to break semantic security for some other identity of its choice for
which it does not have the secret key.

Definition 7.4 (Security of IBE). For an IBE scheme Eid = (G, K, E, D) is
secure if ∀ nuPPT A,

Pr[ExpIBE,CPA
π,A (n) = 1] = negl(n)

We then define the experiment ExpIBE,CPA
π,A .
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Definition 7.5 (IBE-CPA Experiment). We denote the experiment in the
following order:

1. The challenger invokes (mpk, msk) $← G(1n) and send mpk to adversary
A.

2. A can make multiple key queries and generate desired ID id∗ and two
message (m0, m1).

3. Challenger random selects b $← {0, 1} and encrypt c∗ = E(mpk, id∗, mb)

and send c∗ to A.

4. A can make more encryption queries based on c∗ and other id and mes-
sage (m0, m1). Note that throughout the process A can never make any
query on id∗.

5. At the end, A generate b′ and send to challenger.

6. Challenger output 1 if b = b′, 0 otherwise.

7.5.1 IBE Construction from Pairing

We then present a concrete IBE construction from pairing. First, we
will give the hardness assumption in this scheme called bilinear
Diffe-Hellman assumption, or BDH. This assumption says that given
random element gα

0 , gβ
0 , gγ

0 ∈ G and a few additional terms, the
quantity e(g0, g1)αβγ ∈ GT is computationally indistinguishable from
a random element in GT.

Definition 7.6 (Decisional bilinear Diffe-Hellman). Let e : G0 ×G1 →
GT be a pairing where G0, G1, GT are cyclic groups of prime order q with
generators g0 ∈ G0 and g1 ∈ G1. For a given adversary A, the following
distribution is distinguishable:

{gα
0 , gα

1 , gβ
0 , gγ

1 , e(g0, g1)
αβγ, α, β, γ

$← Zq} ≈c {gα
0 , gα

1 , gβ
0 , gγ

1 , e(g0, g1)
δ, α, β, γ, δ

$← Zq}

Note that this assumption work even with g0 = g1.
We then present our IBE construction.

• G(1n):

α
$← Zq, mpk← gα, msk← α

and output (mpk, msk)

• K(msk = α, id):

skid ← H(id)α

where H is a hash function H : {0, 1}∗ → G
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• E(mpk, id, m):

β
$← Zq, c1 ← gβ, c2 ← e(mpk, H(id)β) ·m

and output (c1, c2).

• D(skid, c = (c1, c2)):
m =

c2

e(c1, skid)

By the property of bilinear map, we can verify the correctness of this
scheme,

m =
c2

e(c1, skid)

=
e(mpk, H(id)β) ·m

e(c1, skid)

=
e(gα, H(id)β) ·m

e(gβ, H(id)α)

=
e(g, H(id))αβ

e(g, H(id))αβ
·m

= m

We then prove the security property under random oracle model.

Theorem 7.1. If decision BDH holds for e, H is modelled as a random
oracle, then the above construction is a secure IBE scheme.

Proof. Let A be an adversary that breaks the IBE scheme, we can con-
struct another adversary B such that it breaks the DBDH assumption.

The adversary B works as follows:

1. B receives 5 elements as input {gα, gβ, gγ, z, α, β, γ
$← Zq, z ∈ G},

and B need to determine whether z = e(g, g)αβγ or not.

2. B send IBE public parameter mpk = gα to IBE adversary A.

3. Then A will make multiple skid queries to B. B responds them by

(1) Choose ρ
$← Zq (2) Setting H(id) = gρ (3) set the secret key be

skid = H(id)α = gρ·α. One exception is that B will set a random id′

whose H(id′) = gβ.

4. After receiving the key query, A outputs (id∗, m0, m1).

5. When B receives encryption query (id∗, m0, m1), it first check if
A have previously query skid∗ before, if yes, then abort. Other-

wise, B choose b $← {0, 1} and encrypt mb using (c1 = gγ, c2 =

e(msk, H(id′)γ) ·mb) and send back to A.

6. A eventually output b′ to B. And B output 1 if b′ = b and 0 other-
wise.
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Since e(msk, H(id′)γ) = e(gα, gβγ) = e(g, g)αβγ, B can embedded the
challenge to A and break DBDH.

7.5.2 Digital Signature from IBE

We can directly derive a secure signature scheme from IBE. Given a
secure IBE Eid = (G, K, E, D) with id space ID and message space
MIBE, we construct a secure digital signature scheme S = (G′, S′, V′)
as follows:

• G′(1n): run (mpk, msk) $← G(1n) and output (mpk, msk) as the sign
key pair, with mpk as verification key and msk as sign key.

• S′(msk, m): Given message m ∈ ID, compute σ
$← K(msk, m),

output σ as signature.

• V′(mpk, m, σ): Choose r $← MIBE, compute c $← E(mpk, m, r), and
accept if D(σ, c) = r.

We have the following theorem,

Theorem 7.2. Let Eid be a secure IBE with message space is super-poly.
Then the derive signature scheme S is a secure digital signature scheme.

Proof. Let A be an adversary that breaks the digital signature scheme,
we can construct another adversary B such that breaks the IBE secu-
rity.

The BIE adversary B is modelled as follows:

1. B receives mpk from the challenger, and forward mpk as a signa-
ture public key to A.

2. A makes a series of signing queries m0, . . . , mn to B. B responds
by issuing the corresponding key query to the challenger and
forwarding the answer back the response to A.

3. A will output a signature forgery (m, σ) which it didn’t issue the
sign query m.

4. B then choose two random message t0, t1
$← MIBE and issue

encryption query with the identity m.

5. Bgets back the ciphertext c $← E(mpk, m, tb) for b ∈ 0, 1. Then it
runs t′ ← D(σ, c) and output b′ = t′.

We observe that

• when b = 1, then c $← E(mpk, m, t1), and B outputs 1 with proba-
bility the same as the probability of A breaks digital signature, we
note as SIGadv[A,S ]
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• when b = 0, then c $← E(mpk, m, t0), and B outputs 1 with prob-
ability 1/|MIBE| since B can only make random guess in the
message space.

We then have the probability of B break IBE scheme

1
2
(SIGadv[A,S ] + 1/|MIBE|)

which is not negligible if SIGadv[A,S ] is not negligible.

7.6 Fully Homomorphic Encryption

So far, we’ve seen private and public key encryption and different
security properties (CPA, CCA). We’ve also seen some advanced
encrpytion schemes like Identity-Based Encryption (IBE) that allow
us to encrypt to an identity rather than a public key.

Consider an example where Alice has a complex tax return to fill
out and decides to use a tax return preparation service. The current
pipeline is as follows:

1. Alice sends her tax forms (W2, 1099, etc) to the service.

2. The service prepares the tax return and sends it back to Alice.

3. Alice sends the tax return to the IRS.

However, in this process, the service has access to all of Alice’s tax
information, which is a privacy concern.

Consider an alternate scenario where Alice encrypts her tax forms
before sending them to the service. It would be ideal if the service
could still prepare the tax return without decrypting the forms by
performing operations on the encrypted data. In this case, the ser-
vice learns nothing about Alice’s tax information but is still able to
prepare the tax return. This is the idea behind Fully Homomorphic
Encryption (FHE). FHE was first presented in [Gentry09] 1 and has 1 Craig Gentry. Fully homomorphic

encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st
Annual ACM Symposium on Theory of
Computing, pages 169–178, Bethesda,
MD, USA, May 31 – June 2, 2009. ACM
Press

since been improved upon. We will present the construction from
[GSW13] 2.

2 Craig Gentry, Amit Sahai, and Brent
Waters. Homomorphic encryption from
learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042

of Lecture Notes in Computer Science,
pages 75–92, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Berlin,
Heidelberg, Germany

FHE can be defined in either private or public key settings. The
below construction is defined in the private key setting for message
space Z2.
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Definition 7.7 (Fully Homomorphic Encryption (FHE)). A FHE
scheme for message space Z2 and circuit class C is a tuple of algorithms
(Gen,Enc,Dec,Eval) such that:

• Gen(1λ) → (ek, sk): The key generation algorithm takes a security pa-
rameter λ and outputs a secret key sk and evaluation key ek.

• Enc(sk, m) → c: The encryption algorithm takes a public key sk and mes-
sage m and outputs a ciphertext c.

• Dec(sk, c) → m: The decryption algorithm takes a secret key sk and ci-
phertext c and outputs a message m.

• Eval(ek, F, c1, . . . , cl) → c: The evaluation algorithm takes an evaluation
key ek, a circuit F ∈ C, and l ciphertexts c1, . . . , cl and outputs a cipher-
text c̃.

A FHE scheme satisfies the following properties:

• Correctness: ∀n ∈N, ∀F ∈ C, ∀(µ1, µ2, . . . , µl) ∈ Zl
2,

Pr[Dec(sk,Eval(ek, F,Enc(sk, µ1), . . . ,Enc(sk, µl))) = F(µ1, µ2, . . . , µl)]

= 1− negl(λ)

• Security: The following two distributions are computationally
indistinguishable:

{(ek, ct0) : ct0 ← Enc(sk, 0), (ek, sk)← Gen(1λ)}
{(ek, ct1) : ct1 ← Enc(sk, 1), (ek, sk)← Gen(1λ)}

• Compactness: The size of the ciphertext Eval(ek, F, c1, . . . , cl) is
equal to a fresh encryption of the output of the circuit F on the
plaintexts µ1, . . . , µl :

∀i, ci = Enc(sk, µi)

|Eval(ek, F, c1, . . . , cl)| = |Enc(sk, F(µ1, . . . , µl))|

The construction of FHE is based on the Learning With Errors
(LWE) problem. The high-level construction is done in two steps:

1. Leveled FHE: We first construct a leveled FHE scheme that can
evaluate arbitrary circuits of bounded depth.

2. Bootstrapping: We then use the leveled FHE scheme to construct a
fully homomorphic encryption scheme.
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7.6.1 Leveled FHE

To present some intuition for how we get homomorphic properties,
consider the following construction. Let C ∈ Zl×l

q be a matrix and
v ∈ Zl

q be an eigenvector of this matrix. The eigenvalue is chosen as
the message being encrypted.

Given this, we can easily perform operations on ciphertexts that
correspond to operations on the underlying plaintexts.

• Addition: Given two ciphertexts C1 and C2, we have (C1 + C2)v =

C1v + C2v = (m1 + m2)v.

• Multiplication: Given two ciphertexts C1 and C2, we have (C1 ·
C2)v = C1(C2v) = C1(m2v) = m1m2v.

Note that this is not a secure construction as presented, since with
enough samples we can solve a linear system to obtain the secret
key. However, this gives us some intuition for how we can perform
operations on encrypted data. To make this construction secure, we
need to add noise to the ciphertexts (which is where LWE comes in).

However, a naive way of doing this does not work; suppose we
have that Cv = mv + e where e is the (small) noise term. Then, even
a single multiplication gives us C1C2v = m1m2v + C1e2, where the
noise term is no longer guaranteed to be small since C has no such
guarantees.

The construction of the leveled FHE scheme is as follows. We
use the LWE problem with parameters (n, m, q, χ) where n is the
dimension of the secret key, m is the dimension of the public key, q is
the modulus, and χ is the noise distribution. The scheme is defined
for message space Z2. Additionally, set l = (n + 1) log q.

• Gen(1λ)→ (ek, sk): Sample s′ ← Zn
q and set s =

[
−s′

1

]
∈ Zn+1

q .

• Enc(sk ∈ Zn+1
q , m ∈ Z2) → C ∈ Z

l×(n+1)
q : Sample A ← Zl×n

q
and e ← χl . Define B = A∥As′ + e and C = B + m · G for a fixed
gadget 3 matrix G ∈ Z

l×(n+1)
q . 3 Daniele Micciancio and Chris Peik-

ert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David
Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EU-
ROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 700–
718, Cambridge, UK, April 15–19, 2012.
Springer, Berlin, Heidelberg, Germany

– Note that by choice of B, we have that Bs = A(−s′) + A(s′) +
e = e is an encryption of zero (with noise). Similarly, Cs =

Bs + mGs = e + mGs.

– G is a block matrix containing (n + 1) block column vectors of
size log q each. Each vector is g = (1, 2, 4, . . . , 2log q−1). Con-
cisely, we can define G = In+1 ⊗ g where ⊗ is the Kronecker
product.
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– We also define a Flatten operation on the ciphertext that con-
verts C ∈ Z

l×(n+1)
q to C̃ ∈ Zl×l

q by bit decomposing each
element of C and replacing the element with its bit vector.
This ensures that each element of this matrix is a bit. Looking
ahead, this allows us to multiply ciphertexts without too much
noise growth.

• Dec(s, C): Compute v = Cs. If ||v||∞ < q/4, i.e. each entry of v
is less than q/4, output 0, else output 1. (Note the exact choice of
threshold is somewhat arbitrary.)

• Eval(+, C1, C2): Output C = C1 + C2.

– Notice that Cs = C1s + C2s = (m1Gs + e1) + (m2G + e2) =

(m1 + m2)Gs + (e1 + e2).

– Thus if the original ciphertexts errors ||e1||∞, ||e2||∞ ≤ B, then
the new cipertext error is bounded by 2B.

• Eval(+, C1, C2): Output C = Flatten(C1)× C2.

– We utilize the Flatten operation so that the dimensions match
for matrix multiplication.

– Notice that

Cs = Flatten(C1)× C2s

= Flatten(C1)× (m2Gs + e2)

= m2(Flatten(C1)G)s + Flatten(C1)e2

= m2(C1s) + Flatten(C1)e2

= m2(m1Gs + e1) + Flatten(C1)e2

= (m1m2)Gs + (m2e1 + Flatten(C1)e2).

– Since each entry of Flatten(C1) is in {0, 1}, each entry of Flatten(C1)e2

is a subset sum of e2 ∈ Zℓ
q. Thus if the original ciphertexts

errors ||e1||∞, ||e2||∞ ≤ B, then the new ciphertext error is
bounded by (1 + ℓ)B.

Notice that as Eval is applied iteratively to ciphertexts in order
to implement an arithmetic circuit of depth d, the noise will stay
bounded by (ℓ+ 1)dB. As long as the error stays below the threshold
used by Dec, i.e. (ℓ+ 1)dB << q/4, then correctness will hold. Recall
that ℓ = (n + 1) log(q) where q is typically exponential in n. Then the
error will be manageable as long as d is sublinear in n, e.g. d = n0.99.

Further, notice that since swapping ordering of C1 vs C2 changes
the noise growth of multiplication from m2e1 + Flatten(C1)e2 to
m1e2 + Flatten(C2)e1, we can optimize based on which ciphertext
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started with more noise than the other. This can be leveraged to get
polynomial noise growth instead of exponential.

Now, we have cheated slightly in the above—notice that our con-
struction for Eval(+, C1, C2) implements addition mod q, but we
actually wanted addition mod 2. One way to address this is to simply
implement NAND, which on its own is a complete gate set that can
implement any circuit:

• Eval(NAND, C1, C2): Output C = I − Flatten(C1)× C2.

Altogether, we have achieved leveled FHE.

7.6.2 Bootstrapping

The goal of bootstrapping is to reset the ciphertext’s noise back to a
lower level after it has built up too much. This is done by letting the
server re-encrypt the ciphertext without using the secret key s. How
is this possible? Simply evaluate Dec homomorphically! In particular,
let PDec,C be a circuit which on input s outputs m = Dec(s, C). Let
s1, s2, . . . , sℓ ∈ 0, 1 be s written in binary. We will set the evaluation
key ek = (ek1, . . . , ekℓ) for eki = Enc(s, si), i.e. it gives us an encrypted
copy of the secret key. Then whenever we need to reduce the noise of
a ciphertext C, we can compute PDec,C and run Eval(PDec,C, ek1 . . . ekℓ)
to get a fresh ciphertext Ĉ. Notice that the noise of Ĉ only depends
on the noise of the input ciphertexts eki, which are fresh, and the
depth dP of the circuit PDec,C, which is independent of the noise of C.
Thus Ĉ will have noise bounded by (ℓ+ 1)dP B. As long as our leveled
scheme supports circuits of depth dp + 1, we can achieve arbitrary
depth by bootstrapping after each operation. Of course, we’d like to
avoid this as much as possible since doing the decryption operation
homomorphically is expensive.

In order for this approach to work, security needs to be main-
tained even though we’re releasing encryptions of the secret key.
This is known as circular security. There are no known attacks on
circular security for GSW and other commonly used leveled FHE
constructions. However, they have not been proven to be circularly
secure, and there are encryption schemes for which circular security
is known to not hold for certain cycle lengths. An alternative is using
a new secret key to encrypt the old secret key.

7.7 CCA-2 Secure Encryption from IBE

Finally, we will see how to utilize CPA secure IBE to construct not
only CCA-1 but CCA-2 secure encryption. Let (G, K, E, D) be a CPA
secure IBE scheme and (Gensig,Sign,Verify) be a digital signature



advanced encryption schemes 115

scheme. Then construct a CCA-2 secure encryption scheme as fol-
lows:

• KeyGen(1n):

1. Compute (pk, sk)← G(1n).

2. Output pp = pk and msk = sk.

• Enc(pk, m):

1. Compute (vks, sks)← Gensig(1n).

2. Let id = vks.

3. Let c = E(pp, id, m).

4. Compute σ = Sign(sks, c).

5. Output (id, c, σ).

• Dec(sk, (id, c, σ)):

1. If Verify(id, c, σ) = 0 then abort.

2. Compute skid ← K(sk, id).

3. Output D(skid, c).

The bolded lines are the ones that have been changed compared to
the CCA-1 construction. The changes restrict you to only generating
ciphertexts for id’s you sampled yourself. Note that for this con-
struction we need slightly stronger forgery protection for the digital
signature scheme than we’ve considered previously. Namely, in the
forgery security game the attacker is now allowed to output (m∗, σ∗)

as long as the tuple is fresh, even if m∗ on its own is not. Notice that
this stronger notion holds for any deterministic signature scheme, in-
cluding the BLS scheme we saw. It is also sufficient for our purposes
here to utilize a one-time signature scheme.





8
Proving Computation Integrity

8.1 Zero-Knowledge Proofs

Traditional Euclidean style proofs allow us to prove veracity of state-
ments to others. However, such proof systems have two shortcom-
ings: (1) the running time of the verifier needs to grow with the
length of the proof, and (2) the proof itself needs to be disclosed to
the verifier. In this chapter, we will provide methods enabling provers
to prove veracity of statements of their choice to verifiers while avoid-
ing the aforementioned limitations. In realizing such methods we
will allow the prover and verifier to be probabilistic and also allow
them to interact with each other.1 1 Formally, they can be modeled as

interactive PPT Turing Machines.

8.2 Interactive Proofs

Definition 8.1. (Interactive Proof System) For a language L we have
an interactive proof system if ∃ a pair of algorithms (or better, interacting
machines) (P ,V), where V runs in polynomial time in its input length, and
both can flip coins, such that:

• Completeness: ∀x ∈ L

Pr
P ,V

[OutputV (P(x)↔ V(x)) = 1] = 1,

• Soundness: ∀x /∈ L, ∀P∗ (unbounded)

Pr
V
[OutputV (P∗(x)↔ V(x)) = 1] < negl(|x|),

where OutputV (P(x) ↔ V(x)) denotes the output of V in the interaction
between P and V where both parties get x as input. We stress that P and
P∗ can be computationally unbounded.

We can also consider other variants of this definition, e.g. imperfect
completeness.
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To understand the above definition, let’s consider two languages
over a pair of graphs G0 and G1:

1. Graph Isomorphism (GI): We say that two graphs G0 and G1 are
isomorphic, denoted G0 ∼= G1, if ∃ an isomorphism f : V(G0) →
V(G1) s.t. (u, v) ∈ E(G0) iff ( f (u), f (v)) ∈ E(G1), where V(G)

and E(G) are the vertex and edge sets of some graph G. Let GI =

{(G0, G1)| G0 ∼= G1} be the language that consists of pairs of
graphs that are isomorphic.

2. Graph Non-Isomorphism (GNI): On the other hand, G0 and G1

are said to be non-isomorphic, G0 ≇ G1, if ∄ any such f , and let
GNI = {(G0, G1)| G0 ≇ G1} be the language that consists of pairs
of graphs that are not isomorphic.

Trivial Case of Graph Isomorphism (GI). A prover can easily prove to
a verifier that two graphs are isomorphic by directly providing the
isomorphism f between them. The verifier can confirm the isomor-
phism in time polynomial in the size of the graphs (i.e., its input);
hence we have perfect completeness. If the graphs are not isomor-
phic, no isomorphism exists, and the verifier always rejects; we have
perfect soundness too. This proof was trivial, and we didn’t even re-
quire (back-and-forth) interaction. We now look at a more interesting
case of GNI. Moreover, looking ahead, we will see more interesting
properties that we can ask of proof systems, like zero-knowledge,
where this trivial proof system terribly fails, and we will revisit the
GI problem to see how we can prove it with zero-knowledge.

Interactive Proof for Graph Non-Isomorphism (GNI). Unlike the case
of GI, for GNI, there is no succinct (e.g., linear in the size of graphs)
information that the prover can provide, and consequently, no “ef-
ficient” (polynomial time in the graphs) verification that the veri-
fier can do. This is where the power of interaction comes in. In other
words, since GNI is not believed to have short proofs, an interactive
proof could offer the prover a mechanism to prove to a polynomially
bounded verifier that two graphs are non-isomorphic. We will now
describe an interactive proof system for GNI.

The intuition is simple. Consider a verifier that randomly re-
names the vertices of one of the graphs and give it to the prover.
Can the prover, given the relabeled graph, figure out which graph
did the verifier start with? If G0 and G1 were not isomorphic, then
an unbounded-time prover can figure this out. However, in case G0

and G1 are isomorphic, then the distributions resulting form random
relabelings of G0 and G1 are actually identical. Therefore, even an
unbounded prover has no way of distinguishing which graph the
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verifier started with. So the prover has only a 1
2 probability of guess-

ing which graph the verifier started with. Note that by repeating this
process we can reduce the success probability of a cheating prover to
negligible2. More formally, given a claim (G0, G1) ∈ GNI, we define 2 This strategy is called soundness am-

plification by “sequential” repetition.
Later, we might cover proof systems
where we additionally consider “par-
allel” repetition to achieve different
security properties.

the following interactive proof system:

• Completeness: If (G0, G1) ∈ GNI, then the unbounded P can
distinguish isomorphism of G0 against those of G1 and can always
return the correct b′. Thus, V will always output 1 for this case.

• Soundness: If (G0, G1) /∈ GNI, then it is equiprobable that H is a
random isomorphism of G0 as it is of G1, and so P ’s guess for b′

can be correct only with a probability 1
2

3. Repeating this protocol 3 A curious reader might notice that
the challenge bit b sampled by V is
information-theoretically hidden from
P (hidden in H) when P ’s claim is
false. This is similar to what we saw in
Hash Proof Systems before.

k times, with fresh verifier randomness each time, means the prob-
ability of guessing the correct b′ for all k interactions is 1

2k . And
so the probability of V outputting 0 (e.g. rejecting P ’s proof at the
first sign of falter) is 1− 1

2k .

To conclude, the interactive proof system we described above
enabled something that wasn’t possible without interaction.

8.3 Zero Knowledge Proofs

We saw a crucial difference between GI and GNI: in GI, the prover
already holds a succinct proof to back its claim, we call this a “wit-
ness”, while in GNI, no such succinct proof exists (i.e., there is noth-
ing that the prover can directly send to the verifier to back its claim).
From this point onwards, we exclusively focus on the languages of
the first kind, i.e., where a witness for the claim exists; these lan-
guages cover a vast majority of the use-cases of verifiable computa-
tion, and are formalized as follows:
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Definition 8.2. (NP-Verifier) A language L has an NP-verifier if ∃ a veri-
fier V that is polynomial time in |x| such that:

• Completeness: ∀x ∈ L, ∃ a proo f π s.t. V(x, π) = 1

• Soundness: ∀x /∈ L, and ∀ purported proof π, we have V(x, π) = 0

That is, the conventional idea of a proof is formalized in terms of
what a computer can efficiently verify.

Keeping the witness private. The goal of a proof system is for the veri-
fier to learn if the prover’s claim is valid or not. Let’s focus on what
a verifier actually learns at the end of its interaction with the prover.
In the trivial GI proof system we saw above, the verifier learns the en-
tire isomorphism — in other words, the verifier learns everything that
the prover knew. This is too much leakage. Imagine the prover hold-
ing some secret or valuable information (e.g., its secret key) which
is leaked to the verifier. This is not desirable. We want the verifier to
learn only the validity of the claim, and nothing more. This is where
the notion of zero-knowledge comes in. For a proof system for a lan-
guage with an NP-verifier, this translates to the verifier not learning
the witness from the prover.

We now revisit the GI problem4 for which an NP-verifier exists, as 4 GI is not NP-complete.

we saw earlier. Later, we will consider NP-complete languages like
graph 3-coloring — giving us proof systems for all of NP.

Hiding witness for Graph Isomorphism. We will build the ideas for our
proof system with zero-knowledge gradually by iterating through a
series of straw-man approaches. On the way, we will formally define
zero knowledge.

When G0 and G1 are isomorphic, the isomorphism between them
would be a witness, w, to that fact, that can be used in the proof.
The prover doesn’t want to reveal the isomorphism, w : V(G0) →
V(G1), that they claim to have. The prover is comfortable however
giving us a “scrambled” version, ϕ, of w as long as it doesn’t leak
any information about their precious w. For example, the prover is
willing to divulge ϕ = π ◦ w where π is a privately chosen random
permutation of |V| = |V(G0)| = |V(G1)| vertices. Since π renames
vertices completely randomly, it scrambles what w is doing entirely
and ϕ is just a random permutation of |V| elements. At this point,
we might be a little annoyed at the prover since we could have just
created a random permutation on our own. Let’s look at why this is
still a good starting point.

If we want to be convinced that ϕ really is of the form π ◦ w, thus
containing w in its definition, and isn’t just a completely random
permuation, we can note that if it is of that form then ϕ(G0) =

π(w(G0)) = π(G1) (since w being an isomorphism implies that
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w(G0) = G1). Note that we started with a mapping on input G0

and ended with a mapping on input G1. With an isormphism, one
could get from one graph to the other seamlessly; if the prover re-
ally has the isomorphism it claims to have, then it should have no
problem displaying this ability. So, what if we force the prover to
give us H = π(G1) just after randomly choosing its π and then let it
show us its ability to go from G1 to G0 with ease: give us a ϕ so that
ϕ(G0) = π(G1) = H. The only way the prover can give a mapping
that jumps from G0 to G1 is if they know an isomorphism; in fact,
if the prover could find a ϕ efficiently but did not know an isomor-
phism then they would have been able to see that π−1(ϕ(G0)) = G1

and thus have π−1 ◦ ϕ as an isomorphism from G0 to G1, which
would contradict the assumed hardness of finding isomorphisms
in the GI problem. So by forcing the prover to give us H, as we’ve
defined, and to produce a ϕ so that ϕ(G0) = H, we’ve found a way
to expose provers that don’t really have an isomorphism and we
can then be convinced that they really do know w when they pass
our test. Importantly, the prover didn’t directly tell us w, so we are
headed in the right direction.

But not everything is airtight about this interaction. Why, for in-
stance, would the prover be willing to provide H = π(G1) when
they’re trying to divulge as little information as possible? The prover
was comfortable giving us ϕ since we could have just simulated
the process of getting a completely random permutation of vertices
ourselves, but couldn’t the additional information of H reveal in-
formation about w? At this point, if we look closely, we realize that
H = π(G1) = π′(G0), for some π′, is just a random isomorphic
copy of G0 and G1 as long as G0 ∼= G1; we could have just chosen a
random π′, set H = π′(G0), and let ϕ = π′ and would have created
our very own random isomorphic copy, H, of G1 that satisfies our
test condition H = ϕ(G0), just like what we got from our interaction
with the prover. To our annoyance, the prover can easily fool this test.
Indeed, the test has a hole in it: how can we force the prover to give
us H = π(G1) like we asked? If the prover is lying and it knows our
test condition is to verify that H = ϕ(G0), the prover might just cheat
and give us H = π(G0) so it doesn’t have to use knowledge of w to
switch from G1 to G0. And, in fact, by doing this and sending ϕ = π,
the prover would fool us!

To keep the prover on their toes, though, we can randomly switch
whether we want H to equal ϕ(G0) or ϕ(G1). In our interaction, the
prover must first provide H = π(G1) before we let them know which
we want. By sending H, the prover locks itself into a commitment to
either G0 or G1 if it is cheating, but if not, then it can easily move be-
tween the two graphs. A prover only has a 50% chance of committing
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to the same case we want on a given round and so, if they don’t have
w to deftly switch between G0 and G1 to always answer correctly,
they again have to be an extremely lucky guesser if they’re trying to
lie.

Therefore, we’ve created an interactive scheme that can catch dis-
honest provers with probability 1- 1

2k and where we always believe
honest provers!

• Completeness: If (G0, G1) ∈ GI and P knows w, then whether
V chooses b = 0 or 1, P can always give the correct ϕ which, by
definition, will always result in H = ϕ(Gb) and so V will always
output 1.

• Soundness: If (G0, G1) /∈ GI, then P can only cheat, as discussed
earlier, if the original H it commits to ends up being π(Gb) for
the b that is randomly chosen at the next step. Since b isn’t even
chosen yet, this can only happen by chance with probability 1

2 .
And so the probability V outputs 0 is 1− 1

2k for k rounds.

We have just shown that what we have so far is an interactive
proof system. We now think of how the notion of zero-knowledge
can be formalized here.

As a verifier, we’ve seen some things in interacting with the prover.
Surely, clever folks like ourselves must be able to glean some informa-
tion about w after seeing enough to thoroughly convince us that the
prover knows w. We’ve first seen H, and we’ve also seen the random
b that we chose, along with ϕ at the end; this is our whole view of
information during the interaction. But we’re more bewildered than
annoyed this time when we realize we could have always just chosen
b and ϕ randomly and set H = ϕ(Gb) on our own. Again, everything
checks out when G0 ∼= G1 and we could have produced everything
that we saw during the interaction before it even began. That is,
the distribution of the random variable triple (H, b, ϕ) is identical
whether it is what we saw from the prover during the interaction
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or it is yielded from the solitary process we just described. We’ve
just constructed a complete interactive proof system that entirely
convinces us of the prover’s knowledge of w, yet we could have sim-
ulated the whole experience on our own! We couldn’t have gained
any knowledge about w since we didn’t see anything we couldn’t
have manufactured on our own, yet we are entirely convinced that
(G0, G1) ∈ GI and that P knows w! And so the prover has proven
something to us yet has given us absolutely zero additional knowl-
edge!

This may feel very surprising or as if you’ve been swindled by a
fast talker, and it very much should feel this way; it was certainly
an amazing research discovery! But this is true, and it can be made
rigorous, as we do next.

We should first be sure what we want out of this new proof sys-
tem. We of course want it to be complete and sound so that we ac-
cept proofs iff they’re true. But we also want the verifier to gain zero
knowledge from the interaction; that is, the verifier should have been
able to simulate the whole experience on its own without the verifier.
Finally, we would also like all witnesses to a true statement to each
be sufficient to prove the veracity of that statement and so we let R be
the relation s.t. x ∈ L iff ∃ a witness w s.t. (x, w) ∈ R. We can then
gather all witness by defining R(x) to be the set of all such witnesses.
We will first look at a weaker notion of zero-knowledge, called Honest
Verifier Zero Knowledge (HVZK), where we only require that an honest
verifier (follows the protocol steps) does not learn anything from the
prover. We will then move on to the stronger notion of Zero Knowl-
edge (ZK), where we extend this to all verifiers, including malicious
verifiers.

Definition 8.3. (Honest Verifier Zero Knowledge Proof [HVZK])
(P ,V) is a (perfect) HVZK proof system for a language L w.r.t. wit-
ness relation R if ∃ a PPT machine S (called the simulator) s.t. ∀x ∈ L,
∀w ∈ R(x), the following distributions are (identical) indistinguishable:

{ViewV (P(x, w)↔ V(x))} ≈ {S(x)}

where ViewV (P(x, w) ↔ V(x)) is the random coins of V and all the mes-
sages V saw.

Remark 8.1. In the above definition, ViewV (P(x, w) ↔ V(x)) contains
both the random coins of V and all the messages that V saw, because they to-
gether constitute the view of V , and they are correlated. If the random coins
of V are not included in the definition of ViewV (P(x, w) ↔ V(x)), then
even if S can generate all messages that V saw with the same distribution
as in the real execution, the verifier may still be able to distinguish the two
views using its random coins.
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Remark 8.2. In the above definition, the order of quantifiers is quite impor-
tant. We cannot change it to: ∀x ∈ L, ∀w ∈ R(x), ∃ a PPT machine S .
This is because the definition would be trivially satisfied by hardcoding the
witness w in the simulator S .

To prove HVZK property of the GI proof system we described
earlier, we now construct a simulator S , with input G0, G1, as follows:

1. Sample b ∈ {0, 1} uniformly at random.

2. Sample a random permutation σ of the vertices.

3. Set H ← σ(Gb).

4. Output (H, b, σ).

It is straightforward to see that this simulator produces the same
distribution as the real interaction between the prover and the ver-
ifier. This is because H = σ(Gb) = σ′(G1−b), i.e., H is a random
permutation of both G0 amd G1.

To recap: There is an interesting progression of the requirements
of a proof system: Completeness, Soundness, and the Zero Knowl-
edge property. Completeness first cares that a prover-verifier pair
exist and can capture all true things as a team that works together;
they both honestly obey the protocol trying prove true statements.
Soundness, however, assumes that the prover is a liar and cares about
having a strong enough verifier that can stand up to any type of
prover and not be misled. Finally, Zero Knowledge assumes that the
verifier is hoping to glean information from the proof to learn the
prover’s secrets and this requirement makes sure the prover is clever
enough that it gives no information away in its proof. Unlike the
soundness’ requirement for a verifier to combat all malicious provers,
HVZK is only concerned with the verifier in the original prover-
verifier pair that follows the set protocol. Verifiers that stray from the
protocol or cheat, however, are captured in the natural generalization
to Zero Knowledge proofs.

8.4 Zero-Knowledge for Graph Isomorphism

In this section, we construct our final zero-knowledge interactive
proof system for GI where we don’t have to assume an honest verifier
for zero knowledge to hold. The proof system construction is exactly
the same as the one we saw earlier. What changes is the definition of
zero knowledge, and therefore, the simulator.
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Definition 8.4. (Zero Knowledge Proof [ZK]) (P ,V) is a (perfect) ZK
proof system for a language L w.r.t. witness relation R if ∀ PPT machines
V∗, ∃ a PPT machine S (called the simulator) s.t. ∀x ∈ L, ∀w ∈ R(x), the
following distributions are (identical) indistinguishable:

{ViewV∗(P(x, w)↔ V∗(x))} ≈ {S(x)}

where ViewV∗(P(x, w) ↔ V∗(x)) is the random coins of V∗ and all the
messages V∗ saw.

Remark 8.3. Note that the order of quantifiers matters again. The defini-
tion would be stronger if we switch the order to: ∃ a PPT machine S (called
the simulator) s.t. ∀ PPT machines V∗. This is because the same simulator
would need to work for all possible efficient verifiers. Interestingly, the simu-
lator we construct below for GI satisfies this stronger definition too. In fact,
most simulators we know work for all verifiers (i.e. black-box simulators).
It wasn’t until 2008 that Boaz Barak showed that we can also construct
non-black-box simulators.

Recall our protocol for graph isomorphism: the interaction is
P(x, w) ↔ V(x) where x represents graphs G0 = (V, E0) and
G1 = (V, E1) and w represents a permutation on V such that
w(G0) = G1.

1. P samples a random permutation σ : V → V and sends the graph
H = σ(G1) to V.

2. V samples a random bit b and sends it to P .

3. If b = 1, then P defines a permutation τ to be σ. If b = 0, then
instead τ = σ ◦ w. P then sends τ to V.

4. V verifies that τ(Gb) = H and accepts if so.

The reason the simulator for HVZK doesn’t work anymore is
because a malicious verifier V∗ could pick its bit b from a biased
distribution (e.g. b can be a function of H seen by V∗).

For zero knowledge, consider the following simulator5 S with 5 The simulator satisfies a stronger ZK
property where the same simulator
works for all V∗. Refer to the remark
above for more details.

input G0 and G1 (with vertex set V) and verifier V∗:

1. For i = 1 . . . T; T = poly(n):

(a) Sample a bit b uniformly at random.

(b) Sample a permutation σ : V → V uniformly at random

(c) Send H = σ(Gb) to V∗.
(d) Receive b′ from V∗.
(e) If b = b′, then output (H, b, σ) and terminate. Otherwise, con-

tinue the loop.
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2. Output ⊥.

We construct a sequence of hybrids to prove zero-knowledge. Let
H0 define the interaction between P and V∗: P(x = (G0, G1), w) ↔
V∗(x). Define H1 as follows:

1. For i = 1 . . . T:

(a) Sample a bit b∗ uniformly at random.

(b) Run H0, i.e., P(x = (G0, G1), w)↔ V∗(x).

(c) If b∗ = 0, output ViewV∗(P(x, w)↔ V∗(x)).

(d) If b∗ = 1, continue with the loop.

2. Output ⊥.

The hybrid H1 produces identical distribution as H0 except if b∗ in
all the T iterations is 0; note that P(x = (G0, G1), w) ↔ V∗(x) doesn’t
depend on b∗. This happens with probability at most 1/2T . Next, we
define H2 where we change the logic of which transcript is thrown
away. In each iteration, if b∗ = b, where b is part of the transcript
P(x = (G0, G1), w) ↔ V∗(x), we output the transcript; otherwise, we
continue with the loop. Note again that b∗ is still not used in any of
the transcript (interaction). Therefore, distribution produced by H2 is
identical to H1 because the interaction hasn’t changed at all. Finally,
we construct our last hybrid H3 where the simulator S is run. The
distribution generated by H3 is identical to H2 by same argument we
used for the HVZK simulator.

Efficient Provers. So far, we have considered unbounded provers,
but unfortunately (fortunately?), there aren’t real-life instances of
all-powerful provers that we know of. And for cryptography we
must make more reasonable assumptions about the provers. We will
now assume provers are also bounded to be efficient. Note that if the
prover in our GI proof system already holds the isomorphism, then
generating the proof only takes polynomial time, and it is easy to see
that it satisfies the definition below.
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Definition 8.5 (Efficient Prover Zero-Knowledge Proof). We say (P, V)

is an efficient prover zero-knowledge proof system for a language L and
relation RL if

1. The prover P runs in polynomial time.

2. The protocol is complete. That is, for every x ∈ L there exists a witness
w ∈ RL(x) such that

Pr[P(x, w)↔ V(x) accepts] = 1.

3. The protocol is sound against unbounded provers. That is, for ∀x /∈ L,
we have

Pr[P∗(x, w)↔ V(x) rejects] ≥ 1/2

for any prover P∗ of arbitrary computation power and any witness w.

4. There exists an expected polynomial time probabilistic machine S (a simu-
lator) such that for all PPT V∗, for all x ∈ L, w ∈ RL(x), z ∈ {0, 1}∗ we
have

{ViewV∗(P(x, w)↔ V∗(x, z))} ≃c {SV∗(x, z)}

The soundness probability can be amplified to be greater than any
1− 1/2k, for arbitrary k > 0, by repeating the proof k times. More
precisely, we construct an efficient prover zero-knowledge proof
system (P̃, Ṽ) which repeats (P, V) independently for k times, and Ṽ
accepts if and only if V accepts in all the executions.

It is easy to see that P̃ runs in polynomial time and that the proto-
col is complete. Moreover, it has the following soundness guarantee:
for ∀x /∈ L,

Pr
[
P̃∗(x, w)↔ Ṽ(x) rejects

]
=1− Pr [∀1 ≤ i ≤ k, P∗i (x, w)↔ V(x) accepts]

=1−
k

∏
i=1

Pr [P∗i (x, w)↔ V(x) accepts]

≥1− 1
2k

for any prover P̃∗ = (P∗1 , · · · , P∗k ) of arbitrary computation power and
any witness w.

Finally, it is zero-knowledge, namely, there exists an expected PPT
S̃ such that for all PPT Ṽ∗, and for all x ∈ L, w ∈ RL(x), z ∈ {0, 1}∗,{

ViewṼ∗(P̃(x, w)↔ Ṽ∗(x, z))
}
≃c

{
S̃Ṽ∗(x, z)

}
.

The construction of S̃ is repeating S for k times. We prove by hybrid
argument that the above two distributions are indistinguishable. Hi

is defined to be the output of repeating S for the first i executions
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with Ṽ∗ and repeating P for the rest k − i executions. Then H0 is
the left distribution and Hk is the right one. Any attacher that can
distinguish the above two distributions leads to an attacker that can
distinguish Hi−1 and Hi for some 1 ≤ i ≤ k, which violates the
zero-knowledge property of the original proof system (P, V).

Similar to what we saw in previous definitions of zero-knowlege,
the order of the quantifiers in item 4 matters. If we quantify over x
and w before quantifying over the simulator, then we could hard-
code x and w into our simulator. That is, for all x ∈ L, w ∈ RL(x),
there exists an expected polynomial time probabilistic machine Sx,w

such that for all PPT V∗ and z ∈ {0, 1}∗,

{ViewV∗(P(x, w)↔ V∗(x, z))} ≃c {SV∗
x,w(x, z)}

Since we would like our simulator to be universal, this is not accept-
able.

If we quantify first over the verifier V∗ and then over simulators
S, then this variant is considered as non-black-box zero-knowledge. Our
standard definition is considered as black-box zero-knowledge. There
also exist variants that use statistical indistinguishability rather than
computational indistinguishability.

The z in item 4 is considered as auxiliary input. The auxiliary input
is crucial for the above argument of soundness amplification.

We will discuss the importance of requiring expected polynomial
time in the next section.

8.5 Zero-Knowledge for NP

An n-coloring of a graph G = (A, E) is a function c : A → {1, . . . , n}
such that if (i, j) ∈ E, then c(i) ̸= c(j). So we want to paint each
vertex of a graph a certain color so that the endpoints of any edge are
colored differently.

In the graph 3-coloring problem (3COL), we are given a graph and
asked if there exists a 3-coloring. In this section, we will provide a
computational zero knowledge proof for 3COL. It is a fact that 3COL
is NP-complete, so any problem in NP has a polynomial time reduc-
tion to 3COL. Thus, by giving a zero knowledge proof for 3COL, we
will show that there are zero knowledge proofs for all of NP.

We will first give a high-level description of a zero-knowledge
protocol for 3COL. Suppose a prover P wants to convince a verifier
V that his graph G is 3-colorable without revealing what the coloring
c actually is. If the three colors we use are red, green, and blue, then
note that if we colored all the red vertices blue, all the green vertices
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red, and all the blue vertices green, we would still have a valid 3-
coloring. In fact, if ϕ was any permutation on the color set of red,
green, and blue, then ϕ ◦ c would be a valid 3-coloring of G.

P asks V to leave the room and then samples a random permu-
tation ϕ of the three colors. He colors the vertices of G according to
ϕ ◦ c, then covers all the vertices with cups. At this point, P invites V
back into the room. V is allowed to pick one edge and then uncover
the two endpoints of the edge. If the colors on the two endpoints are
the same, then V rejects P’s claim that the graph is 3-colorable.

If the colors on the two endpoints are different, then V leaves the
room again, P samples ϕ randomly, and the process repeats itself.
Certainly if G is actually 3-colorable, then V will never reject the
claim. If G is not 3-colorable, then there will always be an edge with
endpoints that are colored identically and V will eventually uncover
such an edge.

Note that V does not gain any information on the coloring because
it is masked by a (possibly) different random permutation every time
V uncovers an edge. Of course this protocol depends on P not being
able to quickly recolor the endpoints of an edge after removing the
cups. This is why we need commitment schemes.

8.5.1 Commitment Schemes

We want to construct a protocol between a sender and a receiver
where the sender sends a bit to the receiver, but the receiver will not
know the value of this bit until the sender chooses to "open" the data
that he sent. Of course, this protocol is no good unless the receiver
can be sure that the sender was not able to change the value of his bit
in between when the receiver first obtained the data and when the
sender chose to open it.

Definition 8.6. A commitment scheme is a PPT machine C taking input
(b, r) that satisfies two properties:

• (perfect binding) For all r, s, we have C(0, r) ̸= C(1, s).

• (computational hiding) {C(0, Un)} ≃c {C(1, Un)}

So for the sender to "open" the data, he just has to send his value
of r to the receiver. We say that r is a decommitment for C(x, r). Why
do we require perfect binding instead of just statistical binding? If
there existed even a single pair r, s where C(0, r) = C(1, s), then the
sender could cheat. If he wished to reveal a bit value of 0 then he
could just offer r and if he wished to reveal a bit value of 1 then he
could just offer s.
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We can use injective one-way functions to construct commitment
schemes.

Theorem 8.1. If injective one-way functions exist, then so do commitment
schemes.

Proof. We can let f be an injective one-way function. Recall from
Lecture 3 that f ′(x, r) := ( f (x), r) will also be an injective one-
way function with hard-core bit B(x, r) := ⟨x, r⟩. We claim that
C(b, x, r) := ( f ′(x, r), b⊕ B(x, r)) is a commitment scheme.

If (x, r) ̸= (y, s) then C(0, x, r) ̸= C(0, y, s) because f ′ is injective.
Since C(0, x, r) = ( f ′(x, r), B(x, r)) ̸= ( f ′(x, r), B(x, r)) = C(1, x, r),
then C satisfies perfect binding.

Suppose D can distinguish C(0, Un) from C(1, Un). Then we can
distinguish B(x, r) from B(x, r) given f ′(x, r) which contradicts the
fact that B(x, r) is a hard-core bit for f ′(x, r). Thus, C has the compu-
tational hiding property.

We can extend the definition of commitment schemes to hold
for messages longer than a single bit. These commitment schemes
will work by taking our commitment schemes for bits and concate-
nating them together. For the extended definition, we require that
for any two messages m0 and m1 of the same length, the ensembles
{C(m0, Un)} and {C(m1, Un)} are computationally indistinguishable.

8.5.2 3COL Protocol

Below we describe the protocol P(x, z) ↔ V(x), where x describes a
graph G = ({1, . . . , n}, E) and z describes a 3-coloring c:

1. P picks a random permutation π : {1, 2, 3} → {1, 2, 3} and defines
the 3-coloring β := π ◦ c of G. Using a commitment scheme C for
the messages {1, 2, 3}, P defines αi = C(β(i), Un) for each i ∈ V. P
sends α1, α2, . . . , αn to V.

2. V uniformly samples an edge e = (i, j) ∈ E and sends it to P.

3. P opens αi and αj.

4. V will accept only if it received valid decommitments for αi and αj,
and if β(i) and β(j) are distinct and valid colors.

It is clear that this protocol is PPT. If G is not 3-colorable, then
there will be at least a 1/|E| probability that V will reject P’s claim in
step 4. Since |E| ≤ n2 we can repeat the protocol polynomially many
times to increase the rejection probability to at least 1/2.

We will now show that this protocol is zero-knowledge. We de-
scribe a simulator S below, given a verifier V∗:
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1. Sample an edge e = (i, j) ∈ E uniformly at random.

2. Assign ci and cj to have distinct values from {1, 2, 3} and do so
uniformly at random. Set ck := 1 for all k ̸= i, j.

3. Compute n random keys r1, . . . , rn and set αi = C(ci, ri) for all i.

4. Let e′ ∈ E be the response of V∗ upon receiving α1, . . . , αn.

5. If e′ ̸= e, then terminate and go back to step 1. Otherwise, proceed.
If S returns to step 1 more than 2n|E| times, then output fail and
halt the program.

6. Print α1, . . . , αn, e, send ri and rj to V∗ and then print whatever V∗

responds with.

By construction, S will run in polynomial time. However, some-
times it may output a fail message. We will show that this occurs
with negligible probability.

Suppose that for infinitely many graphs G, V∗ outputs e′ = e
in step 4 with probability less than 1/2|E|. If this is true, then it is
possible for us to break the commitment scheme C that we use in
S. Consider a modified version of S called S̃, where in step 2 we set
ci = 1 for all i. Note that in this case, V∗ cannot distinguish between
any of the edges so the probability that it returns e′ = e is 1/|E|.

If we gave V∗ a set of commitments αk = C(1, rk) for random keys
rk, then we would be in the setting of S̃. If we gave V∗ the commit-
ments αk but with two of the values set to C(c, r) and C(c′, r′) where
c, c′ are distinct random values from {1, 2, 3} and r, r′ are random
keys, then we are in the setting of S. This implies that it possible to
distinguish between these two commitment settings with a proba-
bility of at least 1/2|E| which is non-negligible. It follows that V∗

outputs e′ = e with probability less than 1/2|E| for only finitely many
graphs G.

Thus, the probability that S outputs fail in the end is less than
(1− 1/2|E|)2n|E| < 1/en which is negligible.

Now we need to argue that the transcripts generated by S are
computationally indistinguishable from the transcripts generated
by P ↔ V∗. Again, we consider a modified version of S, called
S′, given a 3-coloring of its input G as auxiliary input. In step 2 of
the simulation, S′ will choose a random permutation of the colors
in its valid 3-coloring for the values of ci rather than setting all but
two values ci and cj equal to 1. Note that this is how our protocol
between P and V behaves.

Observe that P ↔ V∗ is computationally indistinguishable from S′

because S′ outputs fail with negligible probability. Thus, it suffices to
show that S and S′ are computationally indistinguishable. Again, we
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will suppose otherwise and argue that as a result we can distinguish
commitments.

We consider two messages m0 and m1 of the same length where
m0 consists of n − 2 instances of the message 1 and two committed
colors ci and cj (for a random edge (i, j) ∈ E) and m1 consists of
a committed random 3-coloring of G (with a random edge (i, j) ∈
E) chosen. Observe that by feeding the former message to V∗ we
are in the setting of S′ and by feeding the latter message to V∗ we
are in the setting of S. If we could distinguish those two settings,
then we could distinguish the commitments for m0 and m1. This
contradiction completes our argument that our 3-coloring protocol is
zero-knowledge.

8.6 NIZK Proof Systems

We now consider a different class of Zero-Knowledge proof sys-
tems, where no interaction is required: The Prover simply sends
one message to the Verifier, and the Verifier either accepts or rejects.
Clearly for this class to be interesting, we must have some additional
structure: both the Prover and Verifier additionally have access to a
common random public string σ (trusted to be random by both). For
example, they could derive σ by looking at sunspot patterns.

8.7 Definitions

Definition 8.7 (NIZK Proof System). A NIZK proof system for in-
put x in language L, with witness ω, is a set of efficient (PPT) algorithms
(K, P, V) such that:

1. Key Generation: σ← K(1k) generates the random public string.

2. Prover: π ← P(σ, x, ω) produces the proof.

3. Verifier: V(σ, x, π) outputs {0, 1} to accept/reject the proof.

Which satisfies the completeness, soundness, and zero-knowledge properties
below.

Note: We will assume throughout that x is of polynomially-bounded
length, i.e., we are considering the language L ∩ {0, 1}P(k).

Completeness. ∀x ∈ L, ∀ω ∈ RL(x):

Pr[σ← K(1k), π ← P(σ, x, ω) : V(σ, x, π) = 1] = 1.

There is an alternate definition of Statistical Correctness, where the
probability above is 1 − negl(n) instead of 1. For this explanation,
though, Completeness will be used.
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Non-Adaptive Soundness. ∀x ̸∈ L:

Pr[σ← K(1k) : ∃ πstV(σ, x, π) = 1] = negl(k).

If the value of σ that is picked is a “bad" value, then there does not
exist a proof π for x and σ. The above definition is “non-adaptive",
because it does not allow a cheating prover to decide which state-
ment to prove after seeing the randomness σ. We may also consider
the stronger notion of “adaptive soundness", where the prover is
allowed to decide x after seeing σ:

Adaptive Soundness.

Pr[σ← K(1k) : ∃ (x, π)stx ̸∈ L, V(σ, x, π) = 1] = negl(k).

(Non-Adaptive) Zero-Knowledge. There exists a PPT simulator S
such that ∀x ∈ L, ω ∈ RL(x), the two distributions are computation-
ally indistinguishable:

1. σ← K(1k)

2. π ← P(σ, x, ω)

3. Output (σ, π)

1. (σ, π)← S(1k, x)

2. Output (σ, π)

That is, the simulator is allowed to generate the distribution of
randomness σ together with π. Note that if we did not allow S to
produce σ, this definition would be trivial (a verifier could convince
himself by running the simulator, instead of interacting with P).
Allowing S to generate σ still keeps the definition zero-knowledge
(since a verifier sees both (σ, π) together), but puts P and S on un-
equal footing.

We could also consider the adaptive counterpart, where a cheating
verifier can choose x after seeing σ:

(Adaptive) Zero-Knowledge. There exists a PPT simulator split into
two stages S1, S2 such that for all PPT attackers A, the two distribu-
tions are computationally indistinguishable:

1. σ← K(1k)

2. (x, ω)← A(σ), s.t. (x, ω) ∈ RL

3. π ← P(σ, x, ω)

4. Output (σ, x, π)

1. (σ, τ)← S1(1k)

2. (x, ω)← A(σ)

3. π ← S2(σ, x, τ)

4. Output (σ, x, π)

where τ should be thought of as local state stored by the simulator
(passed between stages).

Now we show that adaptive soundness is not harder to achieve
than non-adaptive soundness.

Theorem 8.2. Given a NIZK (K, P, V) that is non-adaptively sound, we
can construct a NIZK (K′, P′, V′) that is adaptively sound.
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Proof. For x0 ̸∈ L, let us call a particular σ “bad for x0" if there exists
a false proof for x0 using randomness σ: ∃ πstV(σ, x0, π) = 1. By
non-adaptive soundness of (K, P, V), we have Prσ[σ bad for x0] =

negl(k).
Now we construct a new NIZK (K′, P′, V′) by repeating (K, P, V)

polynomially-many times (using fresh randomness, and V′ accepts if
and only if V accepts in each iteration). We can ensure that negl(k) ≤
2−2P(k). Now by union bound:

Pr[σ← K′(1k) : ∃ (x, π)stV′(σ, x, π) = 1] ≤ 2P(k) ·Pr
σ
[σ bad for x0] ≤ 2−P(k).

So this new NIZK is adaptively-sound.

8.8 NIZKs from Trapdoor Permutations

Definition 8.8 (Trapdoor One-Way Permutation). A trapdoor one-way
permutation is a collection of one-way permutations { fi : Di → Di}i∈I

where Di ⊂ {0, 1}|i| with five properties.

1. ∃ PPT G such that G(1k) outputs (i, ti) where i ∈ I ∩ {0, 1}k

2. It is easy to sample from Di given i

3. fi is easy to compute but hard to invert

4. fi is a permutation

5. ∃ PPT A such that A(i, y, ti) ∈ f−1
i (y)

When fi is a one-way trapdoor permutation, it is a one-way per-
mutation with the property that it is easy to compute f−1

i only if
given access to trapdoor information ti. The function G is PPT and
computes this trapdoor information. The function A is PPT and in-
verts fi using this trapdoor information.

8.8.1 RSA

RSA is the only known example of a trapdoor one-way permutation.
It relies on the assumption that factoring numbers is hard, but testing
primality is easy. (It is known that testing primality can be done
deterministically in polynomial time. It is believed that factoring can
not be done in polynomial time, however this has not been proven.
The best factoring algorithms are sub-exponential though.)



proving computation integrity 135

Definition 8.9. RSA defines the functions (G, F, A) as follows.

G(1k) = ((N, e), d) where N = pq, for primes p, q,

gcd(e, ϕ(N)) = 1

d = e−1 (mod ϕ(N))

FN,e(x) = xe (mod N)

A((N, e), y, d) = yd (mod N)

The function G randomly selects the values of (p, q, e) to satisfy the
desired properties. We note that if e were not coprime to ϕ(N), then
the function would not be a permutation.

The function ϕ is Euler’s Totient, and when p, q are primes, ϕ(pq) =
(p− 1)(q− 1). (That is, ϕ is the order of the multiplicative group ZN .)

The trapdoor piece of information is the multiplicative inverse of
e modulo the order of the group. It is believed hard to compute this
information given only the integer N.

It is easy to show correctness of this scheme:

A(i, Fi(x), ti) = (xe)d = x (mod N)

We leave it as an exercise that RSA is semantically secure with no
additional assumptions.

8.8.2 NIZK in the Hidden-Bit Model

The hidden-bit model is a variant of the common-reference-string
NIZK, where the prover can selectively reveal only parts of the ran-
dom string to the verifier. (Imagine clouds obscuring the random
string in the sky from the verifier, and the prover can choose which
clouds to clear.)

Definition 8.10 (NIZK in the Hidden-Bit Model). A NIZK in the
hidden-bit model for statement x (with witness ω) is efficient algorithms
(KH , PH , VH) such that:

1. r ← KH(1k) generates the hidden random string (ℓ-bits).

2. (I, ϕ) ← PH(r, x, ω) generates the indices I ⊆ [ℓ] to reveal, and the
proof ϕ.

3. VH(I, {ri}i∈I , x, ϕ) accepts or rejects, given the indices I, the random
string r at indices I, statement x, and proof ϕ.

Which satisfies the completeness, soundness, and zero-knowledge properties
as previously defined.

The above definition is not necessarily very useful in its own right,
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but it is helpful as a stepping stone toward a more useful construc-
tion.

Theorem 8.3. Given a NIZK (PH , VH) in the hidden-bit model, we can
construct a NIZK (P, V) in the normal model using trapdoor one-way
permutations.

Proof. Let the common-reference-string σ in the normal model be of
length kℓ and partition it into ℓ blocks of k-bits each: σ = σ1 . . . σℓ. Let
F be a family of 2k trapdoor OWPs, and let B(·) be the correspond-
ing hard-core bit. We may assume the soundness error of (PH , VH)

(that is, the probability of r allowing a fake proof) is at most 2−2k, by
the same repetition argument as in Theorem 8.2. The protocol for the
normal (P, V) is:

Prover P(σ, x, ω):

1. Sample trapdoor OWP: ( f , f−1)← F (1k).

2. Let αi = f−1(σi) for ∀i ∈ [ℓ].

3. Compute hidden-bit ri = B(αi) for ∀i ∈ [ℓ]. Let r := r1 · · · rℓ.

4. Run the HBM prover: (I, ϕ)← PH(r, x, ω).

5. Send ( f , I, {αi}i∈I , ϕ) to verifier.

Verifier V(σ, x, f , I, {αi}i∈I , ϕ):

1. Confirm f ∈ F , and f (αi) = σi ∀i ∈ I.

2. Compute the revealed bits ri = B(αi) ∀i ∈ I.

3. Output VH(I, {ri}i∈I , x, ϕ).

Intuitively, σi hides ri because σi
f← αi

B→ ri, so by security of the
hard-core bit, the verifier cannot find ri = B(αi) from σi = f (αi).

Notice that if the prover is honest, then αi will be distributed uni-
formly random as well (since f−1 is a permutation), and ri will be
unbiased as well (since B(·) is a hard-core bit). So this reduces ex-
actly to the HBM distributions, and completeness of this protocol is
clear (from completeness of (PH , VH)).

For soundness: for a fixed f = f0, the distribution of ri is uni-
formly random, so by the soundness of (PH , VH) we have

Pr
σ
[P∗ can cheat using f0] ≤ 2−2k

However, a cheating P∗ may be able to cleverly pick f to influence
ri, allowing him to cheat. Since we know there are only 2k possible
choices of f (the verifier confirms f is properly sampled), we can use
the union bound to prove soundness:
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Pr
σ
[ ∃ some f ∈ F s.t. P∗ can cheat] ≤ 2k · 2−2k = 2−k.

Note that more serious problems can occur if V does not confirm
f ∈ F . For example, if f is not a permutation, then f−1(σi) can be
multi-valued, and the prover can choose to “explain" σi using either
αi or α′i – which is a problem if B(αi) ̸= B(α′i).

To prove zero-knowledge, we construct a sequence of prover-
hybrids. The hybrid H0 is the “honest" scenario. Differences from the
previous hybrid are in red:

H0 (normal model)

1. σ1 . . . σℓ = σ
$←− {0, 1}kℓ

2. ( f , f−1)← F

3. αi = f−1(σi) ∀i ∈ [ℓ]

4. ri = B(αi) ∀i ∈ [ℓ]

5. (I, ϕ)← PH(r, x, ω)

6. Output (σ, f , I, {αi}i∈I , ϕ)

H1

1. ri ← {0, 1} ∀i ∈ [ℓ]

2. ( f , f−1)← F

3. αi
$← {0, 1}k such that ri = B( f−1(σi)) ∀i ∈ [ℓ]

4. σi = f (αi) ∀i ∈ [ℓ]

5. (I, ϕ)← PH(r, x, ω)

6. Output (σ, f , I, {αi}i∈I , ϕ)

In H1, we sample αi uniformly at random and then generate σi (in-
stead of sampling σi and then generating αi). This induces an exactly
identical distribution, since f is a permutation.

H2

1. ri
$← {0, 1} ∀i ∈ [ℓ]

2. ( f , f−1)← F

3. (I, ϕ)← PH(r, x, ω)

4. αi
$← B−1(ri) ∀i ∈ [ℓ]
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5. σi = f (αi) ∀i ∈ [ℓ]

6. Output (σ, f , I, {αi}i∈I , ϕ)

In H2, we again switch the sampling order: first sample the (un-
biased) bit ri, then sample αi from the pre-image of ri (which can
be done efficiently by simply trying random αi’s until B(αi) = ri).
This distribution is exactly identical to H1. (The sampling order
can be thought of as factoring the joint distribution: Pr(αi, ri) =

Pr(ri)Pr(αi|ri))

H3

1. ( f , f−1)← F

2. ri
$← {0, 1} ∀i ∈ [ℓ]

3. αi
$← B−1(ri) ∀i ∈ [ℓ]

4. σi = f (αi) ∀i ∈ I

5. σi
$← {0, 1}k ∀i ̸∈ I

6. (I, ϕ)← PH(r, x, ω)

7. Output (σ, f , I, {αi}i∈I , ϕ)

In H3, we only generate σi honestly for i ∈ I, and output random σi

for i ̸∈ I. To argue that this is computational indistinguishable from
H2, first notice that for a fixed (known) bit r,

{ f (B−1(r)}IND{ f (B−1(r)} (8.1)

where the randomness is over sampling the pre-image B−1. Distin-
guishing the above distributions is by definition equivalent to guess-
ing the hard-core bit, so they are indistinguishable. Given the above,
we can further argue that

{ f (B−1(r)}INDUk (8.2)

where Uk is uniform over {0, 1}k. To see this, notice that Uk can be
equivalently generated by first sampling a random bit b, then out-
putting f (B−1(b)), since f is a permutation. Therefore, any distin-
guisher for (8.2) can also be used to distinguish (8.1) with at least as
much distinguishing-advantage (in fact, twice as much). Finally, (8.2)
justifies swapping σi = f (αi) = f (B−1(ri)) with random for i ̸∈ I in
hybrid H3.

H4

1. ( f , f−1)← F
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2. (I, {ri}i∈I , ϕ)← SH(1k, x)

3. αi
$← B−1(ri) ∀i ∈ I

4. σi = f (αi) ∀i ∈ I

5. σi
$← {0, 1}k ∀i ̸∈ I

6. Output (σ, f , I, {αi}i∈I , ϕ)

Finally, H4 simply swaps the hidden-bit prover PH for the hidden-bit
simulator SH , which is indistinguishable by the zero-knowledge
property of (PH , VH). So (P, V) is a NIZK system in the normal
model.

8.8.3 NIZK in the Hidden-Bit Model for Graph Hamiltonian

Definition 8.11. A Hamiltonian cycle in a graph is a cycle that visits each
vertex exactly once. A Hamiltonian graph is a graph that contains a Hamil-
tonian cycle. More precisely, given a graph G = (V, E) with |V| = n, we
say that G is a Hamiltonian graph if there are x1, . . . , xn ∈ V such that
they are all distinct vertices, and ∀i ∈ {1, . . . , n − 1} : (xi, xi+1) ∈ E,
(xn, x1) ∈ E.

It is well known that the problem of determining if a graph is
Hamiltonian is NP-complete. Here we will construct a NIZK proof
in the hidden-bit model (HBM) that is able to prove that a graph is
Hamiltonian.

First we define how graphs are represented as matrices.

Definition 8.12. A graph G = (V, E) with |V| = n, can be represented
as an n × n adjacency matrix MG of boolean values such that MG[i, j] ={

1 if (i, j) ∈ E,
0 otherwise.
A cycle matrix is a matrix which corresponds to a graph that contains a

Hamiltonian cycle and contains no edges other than this cycle.
A permutation matrix is a boolean matrix such that each row and each

column has exactly one entry equal to 1.

Every cycle matrix is a permutation matrix, but the converse is not
true. For each size n, there are n! different permutation matrices but
only (n− 1)! cycle matrices.

In Figure 8.1, one can see the cycle matrix as a cycle (1, 4, 7, 6, 8, 5, 3, 2)
on the set {1, 2, 3, 4, 5, 6, 7, 8}. In Figure 8.2, it is possible to interpret
the matrix as a permutation (1)(2, 8, 6, 5)(3, 7, 4) on the same set.
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Figure 8.1: Cycle matrix.

Figure 8.2: Permutation matrix.

Theorem 8.4. There is a non-interactive zero-knowledge (NIZK) proof
in the hidden-bit model (HBM) for the problem of proving that a graph is
Hamiltonian.

Proof. In the hidden-bit model (HBM), there is a random string r
with ℓ bits that the prover can read. The prover should be able to
produce a proof ϕ and choose a set I ⊆ {1, 2, . . . , ℓ} such that the
proof and the bits of the string corresponding to the set I will be
revealed to the verifier.

Let the graph be G = (V, E) with |V| = n. Note that the content of
G is public. The objective is to convince the verifier that the assertion
is correct (the graph G is Hamiltonian).

Suppose that the random string r comes from a distribution such
that this string represents the entries from an n× n cycle matrix Mc.
Then a proof can be produced as follows.

Since the prover P knows the Hamiltonian cycle x1, . . . , xn in G, he
can find a function ϕ : V → {1, 2, . . . , n} that puts the Hamiltonian
cycle exactly over the cycle of Mc. More precisely, for this function
we have Mc[ϕ(xi), ϕ(xi+1)] = 1 for each edge (xi, xi+1) in the Hamil-
tonian cycle of G (we view indices modulo n). This means that all
the edges of Mc will be covered by edges of G. Conversely, all the
non-edges of G must be taken to non-edges of Mc.
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So the strategy for the prover is to reveal the mapping ϕ and also
reveal entries of Mc corresponding to ϕ(e) where e /∈ E, so e ∈
V × V \ E. More precisely, for the set I = {(ϕ(u), ϕ(v)) | (u, v) /∈ E},
P reveals Mc[ϕ(u), ϕ(v)] = 0, which proves that (ϕ(u), ϕ(v)) is a
non-edge of Mc.

Figure 8.3: Graph matrix that includes a
Hamiltonian cycle. Edges are blue/red
and the cycle is red. White cells are
non-edges.

A visual example is shown in Figure 8.3. The cycle graph Mc given
by the random string corresponds to the red cells. These cells have
value 1 in the matrix Mc and all other cells have value 0. The prover
P provides a bijection ϕ that maps the edges of G to this matrix in
such a way that all red cells are covered and some others may also be
covered (blue cells). The important property guaranteed is that all the
non-edges of G are mapped to cells that have a value 0 in the matrix
(white cells).

This proof satisfies the three properties required for a zero knowl-
edge proof.

Completeness: if P and V are both honest, then P will be able to
convince V that the statement is true. That’s because P knows the
Hamiltonian cycle of G, hence he is always able to produce the map-
ping ϕ.

Soundness: if P is lying and trying to prove a false statement, then
he will get caught with probability 1. If P does not know any Hamil-
tonian cycle in G, then any function ϕ he chooses will not cover all
the edges in Mc. Hence there will be an entry in the matrix Mc which
is one and will be revealed as a non-edge of G.

Zero Knowledge: V cannot get any information besides the fact that
P knows a Hamiltonian cycle in G. A simulator S for this proof can
be simply a machine that generates a random permutation ϕ : V →
{1, 2, . . . , n} and reveals zeros for all the non-edges of ϕ(G).

In this proof we assumed that the random string r comes from a
very specific distribution that corresponds to cycle matrices. Now
we need to show that the general problem (where r comes from
a random uniform distribution of ℓ bits) can be reduced into this
previous scenario.



142 a course in theory of cryptography

We proceed as follows. Let the length of the random string be
ℓ = ⌈3 · log2 n⌉ · n4. We view the random string r as n4 blocks of
⌈3 · log2 n⌉ bits and we generate a random string r′ of length n4 such
that each bit in r′ is 1 if and only if all the bits in the corresponding
block of r are equal to 1. This way, the probability that the i-th bit of
r′ equals 1 is Pr[r′i = 1] ≈ 1

n3 for every i.
Then we create an n2 × n2 matrix M whose entries are given by

the bits of r′. Let x be the number of one entries in the matrix M. The
expected value for x is n4

n3 = n. And the probability that x is exactly n
is noticeable. To prove that, we can use Chebyshev’s inequality:

Pr[|x− n| ≥ n] ≤ σ2

n2 =
n4 · 1

n3 ·
(

1− 1
n3

)
n2 <

1
n

.

So we have Pr[1 ≤ x ≤ 2n− 1] > n−1
n . And the probability Pr[x = k]

is maximal for k = n, so we conclude that Pr[x = n] > n−1
n(2n−1) >

1
3n .

Now suppose that this event (x = n) occurred and we have exactly
n entries equal to 1 in matrix M. What is the probability that those n
entries are all in different rows and are all in different columns?

We can think about the problem this way: after k one entries have
been added to the matrix, the probability that a new entry will be in

a different row and different column is given by
(

1− k
n2

)2
. Multiply-

ing all these values we get

Pr[no collision] ≥
(

1− 1
n2

)2
·
(

1− 2
n2

)2
· · ·
(

1− n− 1
n2

)2

> 1− 2
(

1
n2 +

2
n2 + · · ·+ n− 1

n2

)
= 1− n− 1

n
=

1
n

.

Now assume that this event happened: the matrix M has exactly
n entries equal to 1 and they are all in different rows and different
columns. Then we can define a new n × n matrix Mc by select-
ing only those n rows and n columns of M. By construction, Mc is
a permutation matrix. The probability that Mc is a cycle matrix is
(n−1)!

n! = 1
n . An example is shown in Figures 8.6 and 8.7.

Now let’s join all those probabilities. The probability that Mc is a
cycle matrix is at least

1
3n
· 1

n
· 1

n
>

1
3n3 .

If we repeat this process n4 times, then the probability that Mc is a
cycle matrix in at least one iteration is at least

1−
(

1− 1
3n3

)n4

≈ 1− e−
n
3 = 1− negl(n).
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Figure 8.4: Matrix M which is n2 × n2

for n = 8.

Figure 8.5: Matrix Mc which is n × n
for n = 8. The construction worked,
because Mc is a cycle matrix.

The proof system works as follows. Given a random string r, the
prover P tries to execute the construction above to obtain a cycle
matrix. If the construction fails, the prover simply reveals all the
bits in the string r to the verifier, who checks that the constructions
indeed fails. If the construction succeeds, the prover reveals all the
entries in the random string r that correspond to values in the matrix
M which are not used in matrix Mc. The verifier will check that all
these values for matrix M are indeed 0.

Then the prover proceeds as in the previous scenario using matrix
Mc: he reveals the transformation ϕ and opens all the non-edges.

This process is repeated n4 times. Or, equivalently, a big string of
length ⌈3 · log2 n⌉ · n4 · n4 is used and they are all executed together.
This produces a zero knowledge proof.

Completeness: if P knows the Hamiltonian cycle of G, then he will
be able to find a suitable transformation ϕ whenever a cycle graph is
generated by the construction.
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Soundness: if P is lying and trying to prove a false statement, then
he will get caught with very high probability. If any of the n4 itera-
tions produces a cycle graph, then P will be caught. So the probabil-
ity that he will be caught is 1− e−

n
3 = 1− negl(n).

Zero Knowledge: again V cannot get any information if the con-
struction succeeds. And if the construction doesn’t succeed, all V gets
is the random string r, which also doesn’t give any information.

Theorem 8.5. For any language L in NP, there is a non-interactive zero-
knowledge (NIZK) proof in the hidden-bit model (HBM) for the language
L.

Proof. The language L∗ of Hamiltonian graphs is NP-complete. So
any problem in L can be reduced to a problem in L∗. More precisely,
there is a polynomial-time function f such that

x ∈ L⇐⇒ f (x) ∈ L∗.

So given an input x, the prover can simply calculate f (x) and pro-
duce a NIZK proof in the hidden-bit model for the fact that f (x) ∈
L∗. Then the verifier just needs to calculate f (x) and check if the
proof for the fact f (x) ∈ L∗ is correct.

Theorem 8.6. For any language L in NP, there is a non-interactive zero-
knowledge (NIZK) proof in the common reference string (CRS) model for the
language L.

Proof. In Theorem 8.3 it was shown that any NIZK proof in the
hidden-bit model can be converted into a NIZK proof in the stan-
dard (common reference string) model by using a trapdoor permuta-
tion.

In this proof we assumed that the random string r comes from a
very specific distribution that corresponds to cycle matrices. Now
we need to show that the general problem (where r comes from
a random uniform distribution of ℓ bits) can be reduced into this
previous scenario.

We proceed as follows. Let the length of the random string be
ℓ = ⌈3 · log2 n⌉ · n4. We view the random string r as n4 blocks of
⌈3 · log2 n⌉ bits and we generate a random string r′ of length n4 such
that each bit in r′ is 1 if and only if all the bits in the corresponding
block of r are equal to 1. This way, the probability that the i-th bit of
r′ equals 1 is Pr[r′i = 1] ≈ 1

n3 for every i.
Then we create an n2 × n2 matrix M whose entries are given by

the bits of r′. Let x be the number of one entries in the matrix M. The
expected value for x is n4

n3 = n. And the probability that x is exactly n
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is noticeable. To prove that, we can use Chebyshev’s inequality:

Pr[|x− n| ≥ n] ≤ σ2

n2 =
n4 · 1

n3 ·
(

1− 1
n3

)
n2 <

1
n

.

So we have Pr[1 ≤ x ≤ 2n− 1] > n−1
n . And the probability Pr[x = k]

is maximal for k = n, so we conclude that Pr[x = n] > n−1
n(2n−1) >

1
3n .

Now suppose that this event (x = n) occurred and we have exactly
n entries equal to 1 in matrix M. What is the probability that those n
entries are all in different rows and are all in different columns?

We can think about the problem this way: after k one entries have
been added to the matrix, the probability that a new entry will be in

a different row and different column is given by
(

1− k
n2

)2
. Multiply-

ing all these values we get

Pr[no collision] ≥
(

1− 1
n2

)2
·
(

1− 2
n2

)2
· · ·
(

1− n− 1
n2

)2

> 1− 2
(

1
n2 +

2
n2 + · · ·+ n− 1

n2

)
= 1− n− 1

n
=

1
n

.

Now assume that this event happened: the matrix M has exactly
n entries equal to 1 and they are all in different rows and different
columns. Then we can define a new n × n matrix Mc by select-
ing only those n rows and n columns of M. By construction, Mc is
a permutation matrix. The probability that Mc is a cycle matrix is
(n−1)!

n! = 1
n . An example is shown in Figures 8.6 and 8.7.

Figure 8.6: Matrix M which is n2 × n2

for n = 8.
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Figure 8.7: Matrix Mc which is n × n
for n = 8. The construction worked,
because Mc is a cycle matrix.

Now let’s join all those probabilities. The probability that Mc is a
cycle matrix is at least

1
3n
· 1

n
· 1

n
>

1
3n3 .

If we repeat this process n4 times, then the probability that Mc is a
cycle matrix in at least one iteration is at least

1−
(

1− 1
3n3

)n4

≈ 1− e−
n
3 = 1− negl(n).

The proof system works as follows. Given a random string r, the
prover P tries to execute the construction above to obtain a cycle
matrix. If the construction fails, the prover simply reveals all the
bits in the string r to the verifier, who checks that the constructions
indeed fails. If the construction succeeds, the prover reveals all the
entries in the random string r that correspond to values in the matrix
M which are not used in matrix Mc. The verifier will check that all
these values for matrix M are indeed 0.

Then the prover proceeds as in the previous scenario using matrix
Mc: he reveals the transformation ϕ and opens all the non-edges.

This process is repeated n4 times. Or, equivalently, a big string of
length ⌈3 · log2 n⌉ · n4 · n4 is used and they are all executed together.
This produces a zero knowledge proof.

Completeness: if P knows the Hamiltonian cycle of G, then he will
be able to find a suitable transformation ϕ whenever a cycle graph is
generated by the construction.

Soundness: if P is lying and trying to prove a false statement, then
he will get caught with very high probability. If any of the n4 itera-
tions produces a cycle graph, then P will be caught. So the probabil-
ity that he will be caught is 1− e−

n
3 = 1− negl(n).

Zero Knowledge: again V cannot get any information if the con-
struction succeeds. And if the construction doesn’t succeed, all V gets
is the random string r, which also doesn’t give any information.
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Theorem 8.7. For any language L in NP, there is a non-interactive zero-
knowledge (NIZK) proof in the hidden-bit model (HBM) for the language
L.

Proof. The language L∗ of Hamiltonian graphs is NP-complete. So
any problem in L can be reduced to a problem in L∗. More precisely,
there is a polynomial-time function f such that

x ∈ L⇐⇒ f (x) ∈ L∗.

So given an input x, the prover can simply calculate f (x) and pro-
duce a NIZK proof in the hidden-bit model for the fact that f (x) ∈
L∗. Then the verifier just needs to calculate f (x) and check if the
proof for the fact f (x) ∈ L∗ is correct.

Theorem 8.8. For any language L in NP, there is a non-interactive zero-
knowledge (NIZK) proof in the common reference string (CRS) model for the
language L.

Proof. In Theorem 8.3 it was shown that any NIZK proof in the
hidden-bit model can be converted into a NIZK proof in the stan-
dard (common reference string) model by using a trapdoor permuta-
tion.

8.9 zkSNARKs

Exercises

Exercise 8.1 (Leaky ZK proof). Formally define:

1. What it means for an interactive proof (P, V) to be first-bit leaky zero-
knowledge, where we require that the protocol doesn’t leak anything more
than the first bit of the witness.

2. What it means for an interactive proof (P, V) to be one-bit leaky zero-
knowledge, where we require that the protocol doesn’t leak anything
more than one bit that is an arbitrary adversarial chosen function of the
witness.

Exercise 8.2 (Proving OR of two statements). Give a statistical zero-
knowledge proof system Π = (P, V) (with efficient prover) for the following
language.

L =
{
((G0, G1), (G′0, G′1))

∣∣∣G0 ≃ G1
∨

G′0 ≃ G′1
}

Caution: Make sure the verifier doesn’t learn which of the two pairs of
graphs is isomorphic.
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Exercise 8.3 (ZK implies WI). Let L ∈ NP and let (P, V) be an interac-
tive proof system for L. We say that (P, V) is witness indistinguishable
(WI) if for all PPT V∗, for all x ∈ L, distinct witnesses w1, w2 ∈ RL(x)
and auxiliary input z ∈ {0, 1}∗, the following two views are computation-
ally indistinguishable:

ViewV∗ (P(x, w1)↔ V∗(x, z)) ≃c ViewV∗ (P(x, w2)↔ V∗(x, z)) .

1. Show that if (P, V) is an efficient prover zero-knowledge proof system,
then it is also witness indistinguishable.

2. Assume (P, V) is an efficient prover zero-knowledge proof system. We
have seen in the exercise that (P, V) is also witness indistinguishable.
Define (P̃, Ṽ) to repeat (P, V) independently for k times in parallel
(k is a polynomial), and Ṽ accepts if and only if V accepts in all the
executions. Prove that (P̃, Ṽ) is still witness indistinguishable.

Exercise 8.4. Multi-statement NIZK. The NIZK proof system we con-
structed in class required a fresh common random string (CRS) for each
statement proved. In various settings we would like to reuse the same ran-
dom string to prove multiple theorem statements while still preserving the
zero-knowledge property.

A multi-statement NIZK proof system (K, P, V) for a language L with
corresponding relation R is a NIZK proof system for L with a stronger zero-
knowledge property, defined as follows: ∃ a PPT machine S = (S1,S2) such
that ∀ PPT machines A1 and A2 we have that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



σ← K(1κ),

({xi, wi}i∈[q], state)← A1(σ),

such that ∀i ∈ [q], (xi, wi) ∈ R

∀i ∈ [q], πi ← P(σ, xi, wi);

A2(state, {πi}i∈[q]) = 1


− Pr



(σ, τ)← S1(1κ),

({xi, wi}i∈[q], state)← A1(σ),

such that ∀i ∈ [q], (xi, wi) ∈ R

∀i ∈ [q], πi ← S2(σ, xi, τ);

A2(state, {πi}i∈[q]) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(κ).

Assuming that a single statement NIZK proof system (K, P, V) for NP
exists, construct a multi-statement NIZK proof system (K′, P′, V′) for NP.

Hint: Let g : {0, 1}κ → {0, 1}2κ be a length doubling PRG. Let K′

output the output of K along with y, a random 2κ bit string. To prove x ∈ L
the prover P′ proves that ∃(w, s) such that either (x, w) ∈ R or y = g(s).

Answer Construction:

K′(1n) :
σ← K(1κ)

y← {0, 1}2κ

Output σ′ = (σ, y)

P′(σ′ = (σ, y), x, w) :
π ← P(σ, (x, y), w) if x ∈ L or ∃s s.t. g(s) = y
Output π
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V′(σ′, x, π) : Output V(σ, x, π)

The completeness of this systems follows from the completeness
of (K, P, V). The soundness is based on the PRG g. Since y is a ran-
domly chosen string, for almost all possible choice of y, it is not in
the range of g, and thus x ∈ L with overwhelming probability. There-
fore, the soundness property also follows from that of (K, P, V)

To prove zero-knowledge property, we construct the simulator
S1,S2 as follows:

S1(1κ) :
σ← K(1κ)

s← 0, 1n, y′ = g(s)
Output ((σ, y′), s)

, S2(σ
′ = (σ, y′), x, τ = s) : Output P(σ, (x, y′), s)

We show that the proofs from S2 are indistinguishable from those
from P′ via hybrid argument. Consider following sequence of the
proofs ({πi, i ∈ [q]}).

H0 :
σ← K(1n)

y← {0, 1}2n

{πi ← P(σ, (xi, y), wi)}
H1 :

σ← K(1n)

s← {0, 1}n, y = g(s)
{πi ← P(σ, (xi, y), wi)}

H2 :

σ← K(1n)

s← {0, 1}n, y = g(s)
π1 ← P(σ, (xi, y), s)
{πi ← P(σ, (xi, y), wi) i ∈ [1, q]}

Since g is PRF, it can be shown that H0 ∼= H1 using Sunglass
Lemma. Next, consider an intermediate hybrid H1.5 where every-
thing is the same as H1, but the generation of π1 is simulated by
S1,S2. H1 and H2 are independently indistinguishable from H1.5,
H1
∼= H1.5

∼= H2. This process can be extended the argument to
H3,H4, ... where the next πs are generated with s in the same way.
Therefore, by the hybrid argument, H1 is indistinguishable from a se-
quence where all proofs are generated with s. Thus, S1,S2 simulates
the proofs by P′.

8.9.1 Naor-Yung Construction

The Naor-Yung construction relies on a semantically-secure public-
key encryption scheme (Gen,Enc,Dec) and an adaptively-secure
NIZK proof system (K, P, V) to construct a public-key encryption
scheme (Gencca1,Enccca1,Deccca1) that is CCA1 secure. The scheme is
defined as follows:

• Gencca1(1n) :

1. (pk0, sk0)← Gen(1n)

2. (pk1, sk1)← Gen(1n)
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3. σ← K(1n)

4. Output pk = (pk0, pk1, σ), sk = sk0

• Enccca1(pk = (pk0, pk1, σ), m) :

1. {cb ← Enc(pkb, m; rb)}b∈{0,1}

2. Π← P(σ, (c0, c1), (m, r0, r1))

3. Output (c0, c1, Π)

• Deccca1(sk = sk0, CT = (c0, c1, Π)) :

1. If V(σ, (c0, c1), Π) = 1: output Dec(sk0, c0)

2. Else: output ⊥

Theorem 8.9. Assuming (Gen,Enc,Dec) is a semantically-secure en-
cryption scheme and (K, P, V) is an adaptively-secure NIZK proof system,
then (Gencca1,Enccca1,Deccca1) is secure against non-adaptive chosen-
ciphertext attacks.

Proof. Recall the definition of CCA1 security game:

Challenger Adversary

(pk, sk)← Gen(1n)
pk=(pk0,pk1,σ)−−−−−−−−→

CT1←−−
m1 ← Dec(sk, CT1)

m1−→
...

...
...

CTi←−−
mi ← Dec(sk, CTi)

mi−→
m0,m1←−−−

b $← {0, 1}, c∗ = Enc(pk, mb)
c∗=(c∗0 ,c∗1 ,Π∗)
−−−−−−−→

Output 1 if b′ = b, otherwise 0 b′←−

Starting from this Game 0, we can derive Game 1 to 4, so that it
is clear that at Game 4, the adversary does not receive any informa-
tion about b from c∗, and hence it is impossible to correctly guess
b with a non-negligible advantage. The intuition here is to replace
c∗0 , c∗1 , Π∗ step by step. An important lemma that we make use of in
the construction is:

Lemma 8.1. For ∀CT = (c0, c1, Π), we have that if V(σ, (c0, c1), Π) = 1,
Dec(sk0, c0) = Dec(sk1, c1).

The lemma is a direct result of the soundness guarantee of the
NICK proof system. Now we are ready to construct the games:
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• Game 1: instead of (P, V), its simulator is used to provide the
proof Π∗. Specifically, we have (σ, τ) ← S1(1n) and Π∗ ←
S2(τ, (c∗0 , c∗1)). Now Π∗ does not contain information about b.

• Game 2: note that only sk0 is used to answer all the decryption
queries by the adversary, as a result, we can set c∗1 ← Enc(pk1, 0|m1|).
This works because of the indistinguishability of the public-key
encryption scheme. Now c∗1 does not contain information about b.

• Game 3: using Lemma 8.1, we can use sk1 instead of sk0 to answer
all the decryption queries by the adversary.

• Game 4: now, since only sk1 is used to answer all the decryption
queries by the adversary. we can set c∗0 ← Enc(pk0, 0|m0|). This
works because of the indistinguishability of the public-key encryp-
tion scheme. Now c∗0 does not contain information about b either.

8.10 zkSNARKs

In this section, we will overview the fundamentals of zkSNARKs, or
Zero-Knowledge Succinct Non-interactive ARguments of Knowledge.

8.10.1 Preliminaries

Before diving into zkSNARKs, let’s understand the basic framework
we’re working with. In cryptography, we often deal with statements
of the form “I know a secret value that satisfies some property.” For
instance, we might want to prove that we know the private key cor-
responding to a public key, or that we know a solution to a Sudoku
puzzle, or that we know a valid password for an account.

To formalize these statements, we use what’s called a binary rela-
tion R. This relation takes two inputs: the public statement x (like a
Sudoku puzzle) and the secret witness w (like the solution). R is an
efficiently computable binary relation that outputs 1 if the witness w
is valid for statement x, and 0 otherwise.

For an NP language L, we can say that x ∈ L if and only if there
exists a witness w such that R(x, w) = 1 (R being the corresponding
to L relation). Conversely, x /∈ L if and only if there does not exist
any witness w such that R(x, w) = 1. A crucial property is that
while finding a valid witness w may be computationally hard (like
solving a Sudoku puzzle), verifying the relation R(x, w) = 1 is always
efficient (like checking if a Sudoku solution is valid). This verification
can be done in polynomial time.

This framework allows us to express a wide variety of practical
problems where we want to prove knowledge of a solution without
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revealing the solution itself, which is exactly what zkSNARKs will
help us achieve.

8.10.2 Properties of zkSNARKs

We now introduce the properties of zkSNARKs. We seek to use zk-
SNARKs to prove that x ∈ L ⇐⇒ R(x, w) = 1. Informally, if
a prover has (x, w), we must send a proof π such that the verifier,
who has the instance x, can efficiently check that R(x, w) = 1. For
the purposes of this lecture, we are focusing on non-interactive proof
systems. This means that there is no back-and-forth communication
between the prover and the verifier, and the verifier can verify the
prover’s statement in one shot.

Two of the properties of zkSNARKs are common to all proof sys-
tems: Correctness ensures that if the statement is true, the prover
should always be able to convince the verifier. Soundness ensures
that no cheating prover can convince the verifier about an invalid
statement. However, a correct and sound proof system is not partic-
ularly interesting. Indeed, we could simply achieve this by sending
the witness w from the prover to the verifier. We now discuss two
properties that make zkSNARKs interesting: Succinctness and Zero-
Knowledge. Succinctness requires that the proof π sent by the prover
is significantly smaller than the witness w. Specifically, the proof size
|π| must be bounded by poly(λ, log(|w|)), where λ is the security
parameter. This means the proof grows only (at most) polylogarith-
mically with the witness size. Zero-knowledge ensures that the proof
should not reveal any information about the witness w beyond what
can be deduced from the statement being proven. This property is
what differentiates zkSNARKs from SNARKs.

The succinctness properties make SNARKs incredibly relevant,
even for practical applications where we do not care about hiding
the witness w. This is because the proof size is exponentially more
efficient than directly sending the witness w from the prover to the
verifier.

Succinctness example. Let’s consider a practical example to illustrate
the power of SNARKs’ succinctness property. Suppose we have a 1

TB hard disk and want to prove to a verifier that Hash(hard disk) =

x for some known hash value x. We have two options: Without
SNARKs, we would need to send the entire 1 TB hard disk to the
verifier, who then computes the hash themselves. With SNARKs,
we can generate a succinct proof π (for example 1 KB) that proves
knowledge of the hard disk contents whose hash equals x. Even in
scenarios where we do not need to hide the hard disk contents (i.e.,
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zero-knowledge is not required), the SNARK approach is dramat-
ically more efficient in terms of communication complexity: send-
ing a 1 KB proof versus transferring 1 TB of data. This lecture will
primarily focus on achieving succinctness, as typically adding zero-
knowledge properties is a relatively straightforward extension once
the basic SNARK construction is understood.

How to build SNARKs? To construct SNARKs, we will follow these
key steps. First, we need to find a “SNARK-friendly” representation
model for NP languages. The example we will use is square span
programs. Next, we must show that this model can capture all NP
relations, using boolean circuits as an example. Then, we construct
the SNARK using cryptographic techniques, specifically employing
bilinear groups in our example construction. After that, we prove
soundness. Finally, we add zero-knowledge properties. We will study
the DFGK14 SNARK, which conceptually is in the SNARK family of
the widely known Groth16 zkSNARK. DFGK14 which is conceptu-
ally simpler but employs the same fundamental cryptographic ideas.

8.10.3 Square Span Programs

We begin by introducing Square Span Programs (SSPs), which pro-
vide a “SNARK-friendly” representation for NP languages.

Definition 8.13 (Square Span Program). A square span program Q over
a field F consists of a size parameter m ∈ N, a degree parameter d ∈ N,
and a set of polynomials {v0(x), v1(x), . . . , vm(x), t(x)}. Each vi(x) is a
polynomial over F of degree at most d, and t(x) is a polynomial over F of
degree exactly d.

Definition 8.14 (SSP Acceptance). We say that a square span program
Q accepts an input (a1, . . . , aℓ) ∈ Fℓ if and only if there exist values
aℓ+1, . . . , am ∈ F such that t(x) divides (v0(x) + ∑m

i=1 aivi(x))2 − 1.
In other words, there exists a quotient polynomial h(x) such that
(v0(x) + ∑m

i=1 aivi(x))2 − 1 = h(x)t(x).

The values a1, . . . , aℓ represent the input to our computation, while
aℓ+1, . . . , am serve as auxiliary values (similar to a witness in an NP
relation). As we will see, this algebraic structure is particularly well-
suited for constructing SNARKs. A key property of SSPs is their ex-
pressiveness: we can transform any boolean circuit into an equivalent
square span program. This transformation will be our next focus.
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8.10.4 From Boolean Circuits to SSPs

Consider the boolean circuit in Figure 8.8. We will transform this
circuit into an SSP.

a2
a1

a3 a5

a4
a6NAND

XOR

OR

Figure 8.8: Boolean circuit example for
SSP transformation

First, we express each gate type as a linear constraint. For a XOR
gate, the output a4 of inputs a1, a2 must satisfy a1 + a2 + a4 ∈ {0, 2}.
For an OR gate, the output a5 of inputs a2, a3 must satisfy (1− a2) +

(1 − a3) − 2(1 − a5) ∈ {0, 1}. For a NAND gate, the output a6 of
inputs a4, a5 must satisfy a4 + a5 − 2(1− a6) ∈ {0, 1}.

For the circuit to be satisfiable, all gate constraints must be satis-
fied, the output should be 1 or equivalently the constraint 3(1− a6) ∈
{0, 2} must hold, and all boolean value constraints ai ∈ {0, 1} for
all i ∈ {1, . . . , 6} must be met. To standardize these constraints, we
multiply all constraints involving {0, 1} by 2 to normalize ranges and
combine constraints into a matrix form for a1, . . . , a6. Finally, we seek
to unify the constraints into a larger matrix that encompasses all the
constraints in the whole circuit, where each column represents a sin-
gle boolean algebra constraint. The resulting constraint matrix M is
below, with columns representing the XOR, OR, NAND, and output
constraints, respectively:

1 0 0 0 2 0 0 0 0 0
1 −2 0 0 0 2 0 0 0 0
0 −2 0 0 0 0 2 0 0 0
1 0 2 0 0 0 0 2 0 0
0 4 2 0 0 0 0 0 2 0
0 0 4 −3 0 0 0 0 0 2


There is also a constant vector δ⃗ associated with these constraints:

δ⃗ = [0 0 − 4 3 | 0 0 0 0 0 0]

All constraints must evaluate to elements in {0, 2}10.

Generalizing to Arbitrary Circuits. Let’s now see how we can trans-
form any arbitrary boolean circuit (with fan-in 2, fan-out 1 gates) into
a Square Span Program. Consider a circuit with m wires and n gates.
Our first task is to construct a matrix that captures all the constraints
of our circuit. For each gate k in our circuit, we create a column vec-
tor v⃗k = (v1k, v2k, . . . , vmk)

T that encodes the gate’s constraints. These
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constraints ensure the gate operates correctly—just as we saw with
our XOR, OR, and NAND gates in the previous example.

After encoding all n gates, we add a special column for the out-
put constraint, which takes the form (0, . . . , 0,−3)T . The −3 here is
somewhat arbitrary; any field element different from 2 would work.
We then augment our matrix with a diagonal matrix D where each
diagonal entry is 2. This diagonal matrix serves to enforce that all our
variables are boolean, a crucial requirement for circuit satisfaction.

To complete our constraint system, we need a constant vector
δ⃗ = (δ1, . . . , δn, 3, 0, . . . , 0) where each δi represents the constant term
for gate i. These constants are chosen from the set {0, 2}, with the
exception of the output constraint’s constant which is 3.

Let’s now see how we can transform any arbitrary boolean circuit
into a Square Span Program. Consider a circuit with m wires and n
gates. The complete constraint system can be written as:

(
a1 a2 · · · am

)


v11 v12 · · · v1n 0 2 0 · · · 0
v21 v22 · · · v2n 0 0 2 · · · 0

v31 v32 · · · v3n 0 0 0
. . . 0

...
...

. . .
...

...
...

...
. . .

...
vm1 vm2 · · · vmn −3 0 0 · · · 2


+
(

δ1 δ2 · · · δn 3 0 · · · 0
)

where (a1, . . . , am) are the wire values (variables we solve for), the
first n columns (vij) represent the gate constraints, column n + 1 is
the output constraint (0, . . . , 0,−3)T , the next m columns form the
diagonal matrix D with 2’s on the diagonal, and the constant vector
(δ1, . . . , δm) contains δi ∈ {0, 2} for i ≤ n (gate constraints), δn+1 = 3
(output constraint), and δi = 0 for i > n + 1 (boolean constraints).

Next, we convert these discrete constraints into a polynomial
system. We choose distinct field elements x1, . . . , xd (where d =

n + 1 + m is our total number of constraints) and use polynomial
interpolation to create our SSP. For each row i of our matrix, we
construct a polynomial vi(x) that evaluates to the (i, j) entry when
evaluated at point xj. Similarly, we create a polynomial v0(x) that
interpolates our constant vector δ⃗.

The target polynomial t(x) is defined as the product of all linear
terms:

t(x) =
d

∏
j=1

(x− xj)

This polynomial is crucial because it “zeros out” exactly at our
constraint points. The beauty of this construction is that it transforms
our circuit satisfaction problem into an elegant polynomial divisibil-
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ity question: the circuit is satisfiable if and only if there exist values
(a1, . . . , am) such that:

(
v0(x) +

m

∑
i=1

aivi(x)

)2

− 1 = h(x)t(x)

for some polynomial h(x).
After converting to a polynomial system, our constraint matrix

becomes:


a1

a2
...

am


T


v1(x1) v1(x2) · · · v1(xn) 0 v1(xn+2) 0 · · · 0
v2(x1) v2(x2) · · · v2(xn) 0 0 v2(xn+2) · · · 0

v3(x1) v3(x2) · · · v3(xn) 0 0 0
. . . 0

...
...

. . .
...

...
...

...
. . .

...
vm(x1) vm(x2) · · · vm(xn) vm(xn+1) 0 0 · · · vm(xd)


+



v0(x1)

v0(x2)
...

v0(xn)

v0(xn+1)

0
0
...
0



T

where:

• Each vi(xj) evaluates to the corresponding matrix entry at point xj

• The diagonal entries evaluate to 2 at their respective points

• The output constraint column evaluates to (0, . . . , 0,−3) at point
xn+1

• v0(x) interpolates the constant vector (δ1, . . . , δn, 3, 0, . . . , 0)

For any boolean circuit C, we can construct an SSP instance
(v0(x), . . . , vm(x), t(x)) such that C(x1, . . . , xℓ) = 1 if and only if
there exist values (aℓ+1, . . . , am) making the above polynomial divi-
sion possible.

The correctness of this transformation follows from our construc-
tion: each gate’s constraints are captured at distinct evaluation points,
the boolean nature of our variables is enforced by the diagonal ma-
trix, and the polynomial division condition.

Now, for notational convenience, we define v′0(x) = v0(x)− 1.
At each evaluation point xj, our circuit constraints require:

(
m

∑
i=1

aivi(xj) + v′0(xj)

)2

= 1
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This set of point-wise constraints can be unified into a single poly-
nomial constraint:(

m

∑
i=1

aivi(x) + v′0(x)

)2

− 1 ≡ 0 (mod t(x))

where t(x) = ∏d
j=1(x− xj) is our target polynomial.

Equivalently, there must exist some polynomial h(x) such that:(
m

∑
i=1

aivi(x) + v′0(x)

)2

− 1 = h(x)t(x)

This is precisely the SSP satisfiability condition. Thus, we have
shown that circuit satisfiability is equivalent to the existence of coeffi-
cients ai that satisfy this polynomial divisibility condition.

8.10.5 From SSPs to SNARKs

We’ll use bilinear groups to construct our SNARK. Our construction
begins with a bilinear group setup:

(Fp, G1, G2, GT , e, g1, g2)

The core idea of our construction leverages the pairing operation e
to verify polynomial equations in the exponent, roughly:

e(g[v0(x)+∑m
i=1 aivi(x)]

1 , g[v0(x)+∑m
i=1 aivi(x)]

2 ) = e(gh(x)
1 , gt(x)

2 ) · e(g1, g2)

We cannot directly argue about polynomial in the exponents; x is a
formal variable not a concrete value. For this we will sample a uni-
formly random point τ and check the polynomial equation in the ex-
ponent on τ. We will keep τ secret from the prover thus, intuitively,
from their point of view random.

The common reference string (CRS) forms the foundation of our
construction. It consists of powers of a secret value τ:

CRS = (bg, gτ
1 , gτ2

1 , . . . , gτd

1 , gτ
2 , gτ2

2 , . . . , gτd

2 , gβvℓ+1(τ)
1 , . . . , gβvm(τ)

1 , h2, hβ
2 )

In our protocol, we distinguish between two types of values:

• Statement: (a1, . . . , aℓ) - the public inputs

• Witness: (aℓ+1, . . . , am) - the private values

For proof generation, the prover computes four crucial group
elements:

π1 = g∑m
i=ℓ+1 aivi(τ)

1

π2 = g∑m
i=ℓ+1 aivi(τ)

2

π3 = gh(z)
1

π4 = gβ ∑m
i=1 aivi(τ)

1
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The verification process consists of two steps. First, the verifier
computes intermediate values:

π′1 = gv0(z)+∑ℓ
i=1 aivi(τ)

1 · π1

π′2 = gv0(z)+∑ℓ
i=1 aivi(τ)

2 · π2

Then, the verifier performs three critical pairing checks:

e(π′1, π′2) = e(π3, gt(τ)
2 ) · e(g1, g2)

e(π1, g2) = e(g1, π2)

e(π1, hβ
2 ) = e(π4, h2)

These pairing equations serve distinct purposes in ensuring the
proof’s validity. The first check confirms that the SSP is satisfied by
verifying the polynomial equation in the exponent. The second check
ensures consistency between the prover’s elements in groups G1 and
G2. The final check prevents malformed group elements by verifying
they were properly constructed using the CRS values.

8.10.6 Soundness

Due to the non-interactive nature of our protocol, we cannot rely on
black-box extraction for our security proofs. Instead, we require a
non-black-box extractor with access to the prover’s code, which is
acceptable within our security model.

The soundness guarantees of SNARKs, including our SSP SNARK
construction, differ from traditional cryptographic protocols. They
necessarily rely on non-falsifiable assumptions or the random oracle
model (ROM).

Non-falsifiable assumptions represent a unique class of crypto-
graphic assumptions. The most widely used non-falsifiable assump-
tions are the knowledge-assumptions, informally the simplest form of
these assumptions state that given (g, gα) no adversary can output a
pair (gx, (gx)α) without actually “knowing” the exponent x. The term
“non-falsifiable” stems from the fact that these assumptions make
claims about what an adversary must know, rather than just what it
can or cannot compute.

Our first attempt at formalizing soundness states that for every
probabilistic polynomial-time (PPT) adversary A, there exists a PPT
extractor EA such that:

Pr[(v1, v2)← A(g, gα, z), x ← EA(g, gα, z) : v2 = vα
1 ∧ v1 ̸= gx] = negl(λ)

This probability involves three key components:

• z represents auxiliary information available to the adversary
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• λ denotes the security parameter

• negl(λ) represents a negligible function

Recent research has revealed limitations in this initial formulation.
Specifically, certain obfuscated programs, when provided as auxiliary
input z, enable adversaries to produce valid pairs (v1, v2) while pre-
venting the extractor EA from determining x due to the complexity of
reverse-engineering the obfuscated program.

Knowledge Soundness Definition To address these limitations, we’ve
developed a more robust formulation for our SNARK construction
that assumes only ’benign’ auxiliary information. For all relations
R ∈ R and non-uniform adversaries A, there exists a non-uniform
PPT extractor EA such that for all benign z ∈ Z :

Pr[((v1, v2); c0, . . . , cd)← (A∥EA)(bg, g1, g2, . . . , gτd

1 , gτd

2 , z) :

e(v1, g2) = e(g1, v2) ∧ v1 ̸= g∑d
i=0 ciτ

i

1 ] = negl(λ)

This refined definition captures several crucial aspects: the adver-
sary and extractor share access to the exact same inputs and random
coins, the extractor must produce coefficients ci explaining the adver-
sary’s output, the auxiliary information must be “benign” (excluding
problematic cases like obfuscated programs), and the probability of
adversarial success without the extractor finding a valid witness must
be negligible.

While this non-falsifiable assumption is stronger than traditional
cryptographic assumptions, it appears to be necessary for construct-
ing efficient SNARKs using current techniques.

Knowledge Assumption We now formalize the knowledge assumption
d-PKE (power knowledge of exponent).

For every non-uniform PPT adversary A there exists a non-
uniform PPT extractor EA such that for every “benign” z:

Pr[A||EA(bg, gτ
1 , gτ2

1 , . . . , gτd

1 , gτ
2 , gτ2

2 , . . . , gτd

2 , z)

→ (v1, v2; c0, . . . , cd) : e(v1, g2) = e(g1, v2) ∧ v1 ̸= g∑d
i=0 ciτ

i

1 ] = negl(λ)

This is basically saying that if the adversary can output a valid
pair (v1, v2) then the extractor can output a polynomial with coeffi-

cients c0, . . . , cd such that v1 = g∑d
i=0 ciτ

i

1 . Observe this assumption is
very close to what we actually construct in the SNARK.

We now show a sketch of the knowledge soundness proof.
Assuming a knowledge-sound adversary A, we are going to con-

struct A′ as follows:
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A′(bg, {gτi

1 }d
i=0, {gτi

2 }d
i=0, z′ = (z||{gβvi(τ)

1 }m
i=ℓ+1, h1, hβ

2 ))

We give the rest of the CRS of the SNARK to the adversary inside
of the auxiliary input z′. Then, this adversary runs the adversary of
the knowledge soundness assumption as follows:

A(R, z, crs)→ (π1, π2, π3, π4, (a1, . . . , aℓ))

such that the three pairing verification equation of the SNARK

hold, and outputs v1 = π1 · g
v0(τ)+∑ℓ

i=1 aivi(τ)
1 , v2 = π2 · g

v0(τ)+∑ℓ
i=1 aivi(τ)

2
where e(v1, g2) = e(g1, v2).

There is an extractor E ′A that can output c0, . . . , cd such that v1 =

g∑d
i=0 ciτ

i

1 .
We now construct the extractor EA for knowledge soundness (us-

ing the the extractor the knowledge assumption EA′ ). The extractor is
given v1 = g f (τ)

1 where f (x) = ∑d
i=0 cixi.

In order for this extractor to be able to extract the actual witness of
the relation, we need two things:

1. ( f (x))2 − 1 is divisible by t(x), which can be reduced to the d-
Target Group Strong Diffie-Hellman assumption.

2. fwit(x) := f (x)− v0(x)− ∑ℓ
i=1 aivi(x) is in the span of {vi}m

i=ℓ+1
(equivalently there exist aℓ+1, . . . , am such that fwit(x) = ∑m

i=ℓ+1 aivi(x)),
which can be reduced to the d-Power Diffie-Hellman assumption.

The reductions are based on the fact that the pairing verification
equations of the SNARK hold.

Since the two conditions are satisfied the extractor can output
aℓ+1, . . . , am as a valid witness.

8.11 Recursive Proofs of Knowledge

In this lecture, we discuss recursive zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKs). We assume famil-
iarity with zkSNARKs.

8.11.1 Introduction

Succinct non-interactive arguments of knowledge are short certifi-
cates that attest to the correct execution of a computation without
revealing any secret inputs. Today, zero-knowledge proofs are being
used to secure billions of dollars worth of assets 6. Zero-knowledge 6 ; and

proofs enable a new class of secure applications with enhanced in-
tegrity and privacy guarantees such as verifiable databases 7, private 7 ; ; ; and
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voting protocols 8, anonymous credentials 9, and private cryptocur- 8

9 ; andrencies 10. 10 ; ; and

More technically, SNARKs (for circuit-satisfiability) allow a prover
to demonstrate that it knows a secret witness w such that for pre-
scribed circuit F and prescribed input and output pair (x, y) that
F(x, w) = y. However, today, we will be interested in proving re-
cursive computation. Without loss of generality, we are interested in
proving tail recursion, that is, we want to prove (unbounded) recur-
sive applications of a function F. Unbounded recursion in general
allows us to implement more complex programming patterns such as
for and while, which are not bounded ahead of time. This allows us to
prove stateful computations with dynamic control flow. In practice,
proving recursion allows us to recursively prove blockchain updates,
verifiable delay functions, and even a universal machine, where each
recursive step is a single cycle of a CPU.

Historically, the best known approach to design a proof system
for recursive applications of a function F was to unroll the entire
execution F ◦ F ◦ · · · ◦ F into a monolithic arithmetic circuit, and
then use a standard proof system with succinct proofs for circuit
satisfiability. Unfortunately, this would necessarily mean that the
prover’s space complexity would scale with the entire trace of the
computation. Moreover, in the setting of preprocessed arguments of
knowledge (where the prover and verifier would process the circuit
into a succinct key to use for multiple inputs) this fixed the recursion-
depth ahead of time, which often does not reflect practice.

The first breakthrough was due to Valiant 11 in 2012, who pro- 11

posed incrementally verifiable computation (IVC), which reflected the
recursive structure of the computation into the proof itself: Given a
succinct proof πi attesting to i steps of computation, the prover can
write a succinct proof πi+1 that attests to i + 1 steps by proving the
correct execution of an arithmetic circuit that runs the latest step of
computation, and checks πi (using the proof system’s verifier). This
avoids having to fix the recursion depth ahead of time, while ensur-
ing that the prover’s space complexity only scales with a single step
of execution.

Although undoubtedly elegant, Valiant’s technique introduces a
subtle issue: Proofs of knowledge must satisfy a stronger notion of
soundness known as knowledge-soundness. Essentially, a proof system
is considered knowledge-sound if, for any successful prover with
some secret input to the computation, there exists a corresponding
extractor that, with at most polynomial overhead, can retrieve this
secret input given access to the “source code” of the prover. This
extractor-based definition becomes problematic in the recursive set-
ting: Recursive proofs require recursive extraction in which the extrac-
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tor for step i plays the successful prover for the extractor at step i− 1.
This incurs a polynomial blowup in the extractor for each succes-
sive recursive step. In particular, this results in a final extractor that
runs in exponential-time with respect to the recursion-depth, which
disqualifies it as a valid extractor. To account for this issue, Valiant’s
original technique (and modern techniques) can only provably guar-
antee logarithmic-depth recursion in standard models.

8.11.2 Preliminaries

We operate in the preprocessing model, which means that a trusted
party will be responsible for generating a prover and verifier key.
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Definition 8.15 (Incrementally Verifiable Computation). An incre-
mentally verifiable computation (IVC) scheme is defined by PPT algorithms
(G,P ,V) and deterministic K denoting the generator, the prover, the veri-
fier, and the encoder respectively, with the following interface

• G(1λ, N) → p: on input security parameter λ and size bounds N, sam-
ples public parameters p.

• K(p, F) → (pk, vk): on input public parameters p, and polynomial-time
function F, deterministically produces a prover key pk and a verifier key
vk.

• P(pk, (i, z0, zi), ωi, πi) → πi+1: on input a prover key pk, a counter
i, an initial input z0, a claimed output after i iterations zi, a non-
deterministic advice ωi, and an IVC proof πi attesting to zi, produces
a new proof πi+1 attesting to zi+1 = F(zi, ωi).

• V(vk, (i, z0, zi), πi) → {0, 1}: on input a verifier key vk, a counter i, an
initial input z0, a claimed output after i iterations zi, and an IVC proof
πi attesting to zi, outputs 1 if πi is accepting, and 0 otherwise.

An IVC scheme (G,K,P ,V) satisfies the following requirements.

1. Perfect Completeness: For any PPT adversary A

Pr


V(vk, (i + 1, z0, zi+1), πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
(F, (i, z0, zi), (ωi, πi))← A(pp),
(pk, vk)← K(p, F),
zi+1 ← F(zi, ωi),
V(vk, i, z0, zi, πi) = 1,
πi+1 ← P(pk, (i, z0, zi), (ωi, πi))


= 1

where F is a polynomial-time computable function represented as an
arithmetic circuit.

2. Knowledge Soundness: Consider constant n ∈N.

For all expected polynomial-time adversaries P∗ there exists an expected
polynomial-time extractor E such that

Pr
r


zn = z where
zi+1 ← F(zi, ωi)

∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
(F, (z0, zi), Π)← P∗(pp, r),
(pk, vk)← K(p, F),
V(vk, (n, z0, z), Π) = 1,
(ω0, . . . , ωn−1)← E(p, r)

 ≈ 1

where r denotes an arbitrarily long random tape.

Moreover, F is a polynomial-time computable function represented as an
arithmetic circuit.

3. Succinctness: The size of an IVC proof π is independent of the number of
iterations i.
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Definition 8.16 (Non-Interactive Argument of Knowledge). Consider
a relation R over public parameters, structure, instance, and witness tuples.
A non-interactive argument of knowledge for R consists of PPT algorithms
(G,P ,V) and deterministic K, denoting the generator, the prover, the veri-
fier and the encoder respectively with the following interface.

• G(1λ, N) → p: On input security parameter λ, and length parameter N
samples public parameters p.

• K(p, s) → (pk, vk): On input structure s, representing common struc-
ture among instances, outputs the prover key pk and verifier key vk.

• P(pk, u, w) → π: On input instance u and witness w, outputs a proof π

proving that (p, s, u, w) ∈ R.

• V(vk, u, π)→ {0, 1}: Checks instance u given proof π.

An argument of knowledge satisfies completeness if for any PPT adversary
A,

Pr

 V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

p← G(1λ, N),
(s, (u, w))← A(p),
(p, s, u, w) ∈ R,
(pk, vk)← K(p, s),
π ← P(pk, u, w)

 = 1.

An argument of knowledge satisfies knowledge soundness if for all PPT
adversaries P∗ there exists a PPT extractor E such that for all randomness r

Pr

 (p, s, u, w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣

p← G(1λ, N),
(s, u, π)← P∗(p, r),
(pk, vk)← K(p, s),
V(vk, u, π) = 1,
w← E(p, r)

 ≈ 1.

Definition 8.17 (Succinctness). A non-interactive argument system is
succinct if the size of the proof π is polylogarithmic in the size of the witness
w.
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Definition 8.18 (Commitment Scheme). A commitment scheme is de-
fined by polynomial-time algorithm Gen : N2 → P that produces public
parameters given the security parameter and size parameter, a deterministic
polynomial-time algorithm Commit : P × M × R → C that produces
a commitment in C given a public parameters, message, and randomness
tuple such that binding holds. That is, for any PPT adversary A, given
p← Gen(λ, n), and given ((m1, r1), (m2, r2))← A(p) we have that

Pr[(m1, r1) ̸= (m2, r2) ∧ Commit(p, m1, r1) = Commit(p, m2, r2)] ≈ 0.

The commitment scheme is deterministic if Commit does not use its random-
ness.

Definition 8.19 (Circuit Satisfiability). We define the circuit satisfiability
relation CSAT over structure, instance, witness tuples as follows.

CSAT =
{

(C, (x, y), w)
∣∣∣ C(x, w) = y

}
.
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8.11.3 Construction

Construction 8.1 (Incrementally Verifiable Computation). Given a a
succinct commitment scheme (Gen,Commit) and a succinct non-interactive
argument of knowledge SNARK for circuit-satisfiability we construct an
IVC scheme as follows.

Consider an arithmetic circuit F that takes non-deterministic input We
begin by defining an augmented circuit F′ as follows, where all input argu-
ments are taken as non-deterministic advice.

F′(xi, ωi, πi):

1. Parse (vkSNARK, i, z0, zi)← xi.

2. If i = 0:

(a) Check that z0 = zi.

3. Otherwise:

(a) Check that SNARK.V(vkSNARK, xi, πi) = 1.

4. Output xi+1 ← (vkSNARK, i + 1, z0, F(zi, ωi)).

Given the augmented circuit F′, we define (G,K,P ,V) as follows.

G(λ, N):

1. Output p← SNARK.G(λ, N).

K(p, F):

1. Compute (pkSNARK, vkSNARK)← SNARK.K(p, F′).

2. Output pk← (F′, pkSNARK, vkSNARK) and vk← vkSNARK.

P(pk, (i, z0, zi), (ωi, πi)):

1. Parse (F′, pkSNARK, vkSNARK)← pk.

2. Compute xi+1 ← F′(vkSNARK, (i, z0, zi), ωi, πi).

3. Let xi ← (vkSNARK, i, z0, zi)

4. Output πi+1 ← SNARK.P(pkSNARK, (⊥, xi+1), (xi, ωi, πi)).

V(vk, (i, z0, zi), πi):

1. If i = 0: Check that zi = z0.

2. Otherwise:

(a) Parse vkSNARK ← vk.

(b) Let xi ← (vkSNARK, i, z0, zi).

(c) Check that SNARK.V(vkSNARK, (⊥, xi), πi) = 1.



168 a course in theory of cryptography

Lemma 8.2 (Completeness). Construction 8.1 is complete.

Proof. Consider arbitrary PPT adversary A. Suppose p← Gen(1λ, N).
Suppose that

(F, (z0, zi, i), πi)← A(p).

Suppose that for (pk, vk)← K(p, F) we have that

V(vk, (z0, zi, i), πi) = 1. (8.3)

Then, given

zi+1 ← F(zi, ωi)

and

πi+1 ← P(pk, (z0, zi, i), (ωi, πi))

we must show that

V(vk, (z0, zi+1, N), πi+1) = 1 (8.4)

with probability 1.
Indeed, consider the base case where i = 0. Then, by Precondi-

tion 8.3, by the verifier’s check in the base case (Step 1) we have that
z0 = zi. Therefore, P can successfully compute xi+1 (Step 3), because
the base case check of F′ (Step 2a) passes. Then, by construction of F′

(Step 4) we have that

xi+1 = (vkSNARK, i + 1, z0, F(zi, ωi))

Moreover, by the completeness of SNARK, we have that πi+1 gener-
ated by P (Step 4) is indeed satisfying. Therefore, both the checks of
V in Steps 2b and 2c are passing. As such, we have that postcondi-
tion 8.4 holds.

Suppose instead that i ≥ 1. by Precondition 8.3, by the verifier’s
check in the general case we have that

SNARK.V(vkSNARK, (⊥, xi), πi) = 1

for xi = (vkSNARK, i, z0, zi). Then, P can successfully compute xi+1

(Step 3), as the SNARK verifier check in F′ (Step 3a) holds. Once
again, by construction of F′ (Step 4) we have that

xi+1 = (vkSNARK, i + 1, z0, F(zi, ωi))

Moreover, by the completeness of SNARK, we have that πi+1 gener-
ated by P (Step 4) is indeed satisfying. Therefore, both the checks of
V in Steps 2b and 2c are passing. As such, we have that postcondi-
tion 8.4 holds.
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Lemma 8.3 (Knowledge-Soundness). Construction 8.1 is knowledge-
sound.

Proof. Let n be a global constant. Consider a deterministic expected
polynomial-time adversary P∗. Let p ← Gen(1λ, N). Suppose on
input p and randomness r, P∗ outputs polynomial-time function F,
instance (z0, z), and IVC proof π. Let (pk, vk) ← K(p, F). Suppose
that

V(vk, (z0, z, n), π) = 1.

We must construct an expected polynomial-time extractor E that,
with input (p, r), outputs (ω0, . . . , ωn−1) such that by computing

zi+1 ← F(zi, ωi)

we have that zn = z with probability 1− negl(n)λ.
We show inductively that we can construct an expected polynomial-

time extractor Ei that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1), πi) such
that for all j ∈ {i + 1, . . . , n},

zj = F(zj−1, ωj−1)

and

V(vk, z0, zi, πi) = 1 (8.5)

for zn = z with probability 1− negl(n)λ. Then, because when i = 0, V
checks that z0 = zi the values (ω0, . . . , ωn−1) retrieved by E = E0 are
such that computing zi+1 = F(zi, ωi) for all i ≥ 1 gives zn = z.

At a high level, to construct an extractor Ei−1, we first assume the
existence of Ei that satisfies the inductive hypothesis. We then use Ei

to construct an adversary for the underlying succinct non-interactive
argument, which we denote as P̃i−1. This in turn guarantees an ex-
tractor for the underlying non-interactive argument, which we denote
as Ẽi−1. We then use Ẽi−1 to construct Ei−1 that satisfies the inductive
hypothesis.

In the base case, let En(p, r) output (⊥,⊥, πn) where πn is the
output of P∗(p, r). By the premise, we have that πn is satisfying.
As such, En succeeds with probability 1 − negl(n)λ in expected
polynomial-time.

For i ≥ 1, suppose we can construct an expected polynomial-time
extractor Ei that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1)), and πi that
satisfies the inductive hypothesis. To construct an extractor Ei−1,
we first construct an adversary P̃i−1 for the underlying SNARK as
follows.
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P̃i−1(p, r):

1. Let (F, z0)← P∗(p, r)

2. Let ((zi, . . . , zn−1), (ωi, . . . , ωn−1), πi)← Ei(p, r).

3. Let vkSNARK ← SNARK.K(p, F).

4. Let xi ← (vkSNARK, (i, z0, zi)).

5. Output (F′, (⊥, xi), πi).

We now analyze the success probability of P̃i−1. By the inductive
hypothesis, we have that

V(vk, z0, zi, πi) = 1,

where πi ← Ei(p, r) with probability 1− negl(n)λ. Therefore, by the
the verifier’s checks we have that

SNARK.V(vkSNARK, (⊥, xi), πi) = 1

for xi = (vkSNARK, (i, z0, zi)) and vkSNARK ← SNARK.K(p, F′). There-
fore, P̃i−1 succeeds in producing a satisfying proof πi for structure F′

and instance xi with probability 1− negl(n)λ.
Then, by the knowledge soundness of SNARK there exists an

expected-polynomial-time extractor Ẽi−1 that outputs (xi−1, ωi−1, πi−1)

such that xi = F′(xi−1, ωi−1, πi−1) with probability 1− negl(n)λ.
Given Ẽi−1, we construct an expected polynomial time Ei−1 as

follows.

Ei−1(p, r):

1. Run P̃i−1(p, r) to parse

((zi, . . . , zn−1), (ωi, . . . , ωn−1), πi)

from its internal state.

2. Compute (xi−1, ωi−1, πi−1)← Ẽi−1(p, r).

3. Parse (vkSNARK, (i− 1, z0, zi−1))← xi−1

4. Output ((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1), πi−1).

We now reason about the success probability of Ei−1. We first
reason that the output (zi−1, . . . , zn−1), and (ωi−1, . . . , ωn−1) are
valid. By the inductive hypothesis, we already have that for all j ∈
{i + 1, . . . , n},

zj = F(zj−1, ωj−1)
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with probability 1− negl(n)λ. Moreover, by the success probability of
Ei−1, we have that

zi = F(zi−1, ωi−1)

and that
SNARK.V(vkSNARK, xi−1, πi−1) = 1

where xi−1 = (vkSNARK, (i− 1, z0, zi)) with probability 1− negl(n)λ.
Therefore we have that Ei−1 succeeds with probability 1− negl(n)λ
satisfying the inductive hypothesis.





9
Secure Computation

9.1 Introduction

Secure multiparty computation (or MPC) considers the problem
of enabling mutually distrusting parties to compute a joint public
function on their private inputs without revealing any extra infor-
mation about these inputs beyond what is leaked by the output of
the computation. For instance, there could be three parties P1, P2, P3

with private inputs x1, x2, x3 respectively, and they want to compute
a public function f without revealing anything beyond f (x1, x2, x3).
Note that this notion generalizes zero knowledge proofs, where the
prover’s input is the statement-witness pair (x, w), the verifier’s input
is the statement x, and the public function f is the verification algo-
rithm for the corresponding relation which outputs 1 if w is a valid
witness w.r.t. x.

This setting is well motivated, and captures many different appli-
cations. Now, we look at some applications of MPC which will help
build intuition and also highlight the challenge in defining security
for MPC.

Voting: Electronic voting can be thought of as a multi-party compu-
tation between n players: the voters. Their input is their choice
b ∈ {0, 1} (we restrict ourselves to the binary choice setting with-
out loss of generality), and the function they wish to compute is
the majority function.

Yao’s Millionaires’ Problem: Two millionaires want to know who is
richer without revealing their actual wealth. The function they
want to compute is f (x1, x2) = x1 > x2.

Private Contact Discovery: Signal employs MPC to identify contacts
from your phone who are also on Signal, all without exposing
your contact list to Signal. Here the function f is an intersection
function over the user’s contact list and Signal’s member list. This
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specific application of MPC is commonly known as private set
intersection (PSI) and has been the subject of extensive research.

Password Breaches: Suppose your browser needs to verify whether
your password has been compromised, but without disclosing it
to a service that maintains a database of leaked passwords. This is
also an instance of PSI.

Cryptographic Wallets: Cryptographic wallets typically split their keys
into multiple shards that are then given to multiple parties (e.g.,
the user’s device and the wallet provider) so that compromising
any one party does not reveal the keys. In principle, whenever
these keys are needed, the client can get the shards from each
party and perform the operation. However, the client becomes the
single point of compromise for that period and that defeats the
point of sharding. MPC enables the parties holding the shards to
perform any operations on the keys without reconstructing it on a
single device.

Searchable Encryption: Searchable encryption schemes allow clients
to store their data with a server, and subsequently grant servers
tokens to conduct specific searches.

Note that in all these applications, the output revealed to the par-
ties itself can reveal a lot of information about the private inputs
of the parties. For instance, in the voting example, if only one user
votes, their input is trivially revealed. Or, in the case of the million-
aires, if x1 = 106 + 1 and f (x1, x2) = 1, then the first millionaire
knows that x2 = 106. Similarly, most searchable encryption schemes
do not consider access pattern leakage. This leakage tells the server
potentially valuable information about the underlying plaintext. How
do we model all the different kinds information that is leaked?

From these examples we see that defining security of MPC is
tricky because it is imperfect in that some leakage in inherent in the
computation. What we want to capture is that no party should learn
anything about the private inputs of other parties beyond what is
revealed by the output of the computation. To formalize this notion,
we adopt the real/ideal world paradigm.

9.2 Real/Ideal World Paradigm

Suppose there are n parties and each party Pi has a private input xi.
They want to compute a public function (represented by circuit C)
on their inputs. The goal is to do this securely: even if some parties
are corrupted, no party Pi should learn anything beyond yi where
(y1, . . . , yn) = C(x1, . . . , xn).
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Real World. In the real world, the n parties interact with each other
and participate in a protocol Π to compute C. This protocol can
involve multiple rounds of interaction. The real world adversary A
can corrupt a subset of the parties. The interaction is summarized in
Figure 9.1.

Pn ℱC

P1

P2
P1 P2⋱ Pn⋯

Real-world Ideal-world
Figure 9.1: Real world interaction.

Ideal World. In the ideal world, an angel or trusted third party
FC (parameterized by C) helps in the computation of C. The com-
putation in this world is secure by design: each party Pi sends
its input xi to FC and receives the output yi of the computation
(y1, . . . , yn) = C(x1, . . . , xn). In this world, an ideal world adver-
sary S controls the parties corrupted by A in the real world, and as
such, is responsible for sending their inputs to FC. The interaction is
summarized in Figure 9.2.

Pn ℱCP1

P2 P1 P2⋱ Pn⋯

Real-world Ideal-world
Figure 9.2: Ideal world interaction.

Notation. Let λ denote the security parameter. Let RealAΠ(1λ, x1, . . . , xn, z)
denote the joint distribution of the honest party outputs as well as
the view of the corrupted parties (randomness, inputs, outputs, all
messages seen during the protocol) in the real world, where z is an
auxiliary inputs available to A. Let IdealSFC

(1λ, x1, . . . , xn, z) denote
the joint distribution of the honest party outputs in the ideal world
and the protocol transcript (or view) output by ideal adversary S
given inputs and outputs of corrupted parties.

Security Definition. A protocol Π securely realizes C if there exists
a PPT ideal adversary SA(·) (with oracle access to the real world
adversary) such that ∀ non-uniform PPT adversaries A in the real
world, ∀ private inputs x1, . . . , xn, and ∀ auxiliary inputs z ∈ {0, 1}∗,
we have:

RealAΠ(1λ, x1, . . . , xn, z) ≈c Ideal
S
FC

(1λ, x1, . . . , xn, z)

Setting. So far, we have brushed over some important details of the
setting. Below we state these details explicitly:

1. Assumption: The protocol could rely on cryptographic assump-
tions and be secure against computationally bounded adversaries,
or it could be statistically secure and protect against unbounded
adversaries.

2. Setup: The parties in the protocol could have access to a common
reference string (CRS) that is generated by the trusted party in the
ideal world.

3. Communication Channel: The setting could assume private peer-
to-peer (P2P) channels among the parties, a broadcast channel,
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a combination of both, or insecure channels which don’t have
privacy or integrity. In the statistical setting, we assume secure P2P
channels because they require computational assumptions to set
up.

4. Corruption Type: We consider primarily two types of adversaries:

• Semi-honest adversaries: Corrupted parties follow the protocol
execution Π honestly, but attempt to learn as much information
as they can from the protocol transcript.

• Malicious adversaries: Corrupted parties can deviate arbitrarily
from the protocol Π.

5. Corruption Model: We have different models of how and when
the adversary can corrupt parties involved in the protocol:

• Static: The adversary chooses which parties to corrupt before
the protocol execution starts, and during the protocol, the mali-
cious parties remain fixed.

• Adaptive: The adversary can corrupt parties dynamically dur-
ing the protocol execution and the state of that honest party
corrupted is given to the adversary.

6. Fairness: The protocol we consider could be “fair”, i.e., if one
party gets their output, then all parties get their output, or they
could be unfair where a corrupted party can abort the computa-
tion after learning the output before the honest parties can learn it.
It is important to model this weakness of the protocol in the ideal
functionality FC. This is done by having the ideal functionality ask
the ideal adversary if the honest parties should receive an output.
If adversary disapproves, the ideal functionality sends the special
abort output ⊥ to the honest parties.

7. Corruption Bound: The setting places some upper bound t on
the total parties n that can be corrupted by the adversary (there
is nothing to protect when all parties are corrupted). Some well-
known corruption settings are t < n, t < n/2, t < n/3, and
t ≤ log n.

8. Standalone vs Concurrent Execution: In some settings, protocols
can be executed in isolation; only one instance of a particular pro-
tocol is ever executed at any given time. In other settings, many
different protocols can be executed concurrently. This can compro-
mise security.
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9.3 A Simple and Efficient MPC Protocol

This protocol is highly efficient and considers a very simple setting:
n = 3 parties, corruption bound t = 1, unbounded and semi-honest
adversary, statistical security, unfairness, and secure P2P channels.
(2,3)-secret sharing scheme: A (n, t)-sharing splits a secret such that
any t shares are enough to reconstruct the secret, and any set of less
than t shares do not reveal anything about the secret. Let k ∈ Zp be
a secret. A (3, 3)-sharing is easy to construct: sample k1, k2 uniformly
at random from Zp and set k3 = k − k1 − k2 mod p. Given (3, 3)-
shares, we can construct a (2, 3)-sharing by considering a replicated
secret sharing scheme: each party Pi gets shares ki, ki+1 mod 3. It is
easy to see that the shares held by any two parties are sufficient to
reconstruct the secret.
Protocol: The protocol proceeds in the following phases:

Input Sharing Phase: Each party Pi shares their input xi using the
(2, 3)-sharing scheme, and sends the corresponding shares to the
other parties. For instance, P1 shares x1 as (x1,1, x1,2, x1,3), keeps
(x1,1, x1,2), and sends (x1,2, x1,3) to P2 and (x1,3, x1,1) to P3.

Computation Phase: The computation phase maintains the invariant
that given (2, 3)-shares of the input to a gate (addition or multipli-
cation), the computation produces (2, 3)-shares of the output of the
gate. That way, the parties can keep compute the gates all the way
to the output of the circuit C.

Addition Gate: Addition gates are simple: given (2, 3)-shares of
α and β, the parties can compute (2, 3)-shares of α + β by sim-
ply summing up their shares locally. For instance, party P1 can
compute its shares of α + β by computing (α1 + β1, α2 + β2).

Multiplication Gate: Multiplication gates are more involved. The
product γ = α · β can be represented in the form of shares as
follows: γ = α · β = (α1 + α2 + α3) · (β1 + β2 + β3). There are
nine terms in this product, and note that all parties together can
compute every term given their shares of α and β. Thus, assuming
each party computes the sum of three mutually exclusive terms
(let’s call it γi for party Pi), they can locally compute (3, 3)-shares
of γ. To go from (3, 3)-shares to (2, 3)-shares, each party Pi can
send γi to party Pi−1 mod 3.

We are not done yet. These shares represent partial sums and can
reveal information about the secret. To prevent this, each party
needs to additionally mask γi before sending it. In particular, Pi

does the following: (i) mask γi by adding a random value ri to it
before sending it to Pi−1 mod 3, (ii) subtract ri from γi+1 mod 3 re-
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ceived from Pi+1 mod 3, and (iii) additionally send ri to Pi+1 mod 3,
who also subtracts ri from γi+1 mod 3.

Output Reconstruction Phase: Each party simply publishes its shares
of the output of the circuit C.

Theorem 9.1. The protocol described above securely realizes the circuit C
in the presence of a static semi-honest adversary that corrupts at most one
party.

Proof. Let Pi be the corrupted party without loss of generality. Con-
sider the following ideal world adversary S that simulates the real
world adversary A:

• Input Sharing Phase: S knows the input xi of corrupted party Pi. It
sends it to FC and receives the output yi = C(x1, x2, x3). To sim-
ulate adversary’s view perfectly during the input sharing phase,
S simply sends uniformly random strings on behalf of the honest
parties.

• Computation Phase: The view of corrupted party only consists of
the messages transferred during the evaluation of multiplication
gates. Note that the message received by a party is uniformly ran-
dom due to the random masking, and thus, S can again simulate
the view perfectly by simply including uniformly random mes-
sages.

• Output Reconstruction Phase: The view of corrupted party during
output reconstruction phase is the shares output by the honest
parties. Note that S knows the randomness of corrupted party Pi,
its inputs as well as all the messages it saw during the protocol.
Thus, it knows the exact shares held by Pi. Given the output yi for
the corrupted party received from FC and the shares held by Pi, S
can infer what the shares output by honest parties should be. This
completes the simulation.

It is easy to see that this transcript is identical to the real world tran-
script, and thus the protocol is secure.

9.4 Oblivious transfer

Rabin’s oblivious transfer sets out to accomplish the following special
task of two-party secure computation. The sender has a bit s ∈ {0, 1}.
She places the bit in a box. Then the box reveals the bit to the receiver
with probability 1/2, and reveals ⊥ to the receiver with probability
1/2. The sender cannot know whether the receiver received s or ⊥,
and the receiver cannot have any information about s if they receive
⊥.



secure computation 179

9.4.1 1-out-of-2 oblivious transfer

1-out-of-2 oblivious transfer sets out to accomplish the following related
task. The sender has two bits s0, s1 ∈ {0, 1} and the receiver has a
bit c ∈ {0, 1}. The sender places the pair (s0, s1) into a box, and the
receiver places c into the same box. The box then reveals sc to the
receiver, and reveals ⊥ to the sender (in order to inform the sender
that the receiver has placed his bit c into the box and has been shown
sc). The sender cannot know which of her bits the receiver received,
and the receiver cannot know anything about s1−c.

Lemma 9.1. A system implementing 1-out-of-2 oblivious transfer can be
used to implement Rabin’s oblivious transfer.

Proof. The sender has a bit s. She randomly samples a bit b ∈ {0, 1}
and r ∈ {0, 1}, and the receiver randomly samples a bit c ∈ {0, 1}.
If b = 0, the sender defines s0 = s and s1 = r, and otherwise, if
b = 1, she defines s0 = r and s1 = s. She then places the pair (s0, s1)

into the 1-out-of-2 oblivious transfer box. The receiver places his bit
c into the same box, and then the box reveals sc to him and ⊥ to the
sender. Notice that if b = c, then sc = s, and otherwise sc = r. Once
⊥ is revealed to the sender, she sends b to the receiver. The recieiver
checks whether or not b = c. If b = c, then he knows that the bit
revealed to him was s. Otherwise, he knows that the bit revealed to
him was the nonsense bit r and he regards it as ⊥.

It is easy to see that this procedure satisfies the security require-
ments of Rabin’s oblivious transfer protocol. Indeed, as we saw
above, sc = s if and only if b = c, and since the sender knows b,
we see that knowledge of whether or not the bit sc received by the
receiver is equal to s is equivalent to knowledge of c, and the security
requirements of 1-out-of-2 oblivious transfer prevent the sender from
knowing c. Also, if the receiver receives r (or, equivalently, ⊥), then
knowledge of s is knowledge of the bit that was not revealed to him
by the box, which is again prevented by the security requirements of
1-out-of-2 oblivious transfer.

Lemma 9.2. A system implementing Rabin’s oblivious transfer can be used
to implement 1-out-of-2 oblivious transfer.

Proof sketch. The sender has two bits s0, s1 ∈ {0, 1} and the re-
ceiver has a single bit c. The sender randomly samples 3n random
bits x1, . . . , x3n ∈ {0, 1}. Each bit is placed into its own a Rabin obliv-
ious transfer box. The ith box then reveals either xi or else ⊥ to the
receiver. Let

S := {i ∈ {1, . . . , 3n} : the receiver knows xi}.
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The receiver picks two sets I0, I1 ⊆ {1, . . . , 3n} such that #I0 = #I1 =

n, Ic ⊆ S and I1−c ⊆ {1, . . . , 3n} \ S. This is possible except with prob-
ability negligible in n. He then sends the pair (I0, I1) to the sender.

The sender then computes tj =
(⊕

i∈Ij
xi

)
⊕ sj for both j ∈ {0, 1} and

sends (t0, t1) to the receiver.
Notice that the receiver can uncover sc from tc since he knows xi

for all i ∈ Ic, but cannot uncover s1−c. One can show that the security
requirement of Rabin’s oblivious transfer implies that this system
satisfies the security requirement necessary for 1-out-of-2 oblivious
transfer.

We will see below that length-preserving one-way trapdoor per-
mutations can be used to realize 1-out-of-2 oblivious transfer.

Theorem 9.2. The following protocol realizes 1-out-of-2 oblivious transfer
in the presence of computationally bounded and semi-honest adversaries.

1. The sender, who has two bits s0 and s1, samples a random length-
preserving one-way trapdoor permutation ( f , f−1) and sends f to the
receiver. Let b(·) be a hard-core bit for f .

2. The receiver, who has a bit c, randomly samples an n-bit string
xc ∈ {0, 1}n and computes yc = f (xc). He then samples another
random n-bit string y1−c ∈ {0, 1}n, and then sends (y0, y1) to the
sender.

3. The sender computes x0 := f−1(y0) and x1 := f−1(y1). She computes
b0 := b(x0) ⊕ s0 and b1 := b(x1) ⊕ s1, and then sends the pair (b0, b1)

to the receiver.

4. The receiver knows c and xc, and can therefore compute sc = bc ⊕ b(xc).

Proof. Correctness is clear from the protocol. For security, from the
sender side, since f is a length-preserving permutation, (y0, y1) is
statistically indistinguishable from two random strings, hence she
can’t learn anything about c. From the receiver side, guessing s1−c

correctly is equivalent to guessing the hard-core bit for y1−c.

9.4.2 1-out-of-4 oblivious transfer

We describe how to implement a 1-out-of-4 OT using 1-out-of-2 OT:

1. The sender, P1 samples 5 random values Si ← {0, 1}, i ∈ {1, . . . , 5}.
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2. P1 computes

α0 = S0 ⊕ S2 ⊕m0

α1 = S0 ⊕ S3 ⊕m1

α2 = S1 ⊕ S4 ⊕m2

α3 = S1 ⊕ S5 ⊕m3

It sends these values to P2.

3. The parties engage in 3 1-out-of-2 Oblivious Transfer protocols for
the following messages: (S0, S1), (S2, S3), (S4, S5). THe receiver’s
input for the first OT is the first choice bit, and for the second and
third ones is the second choice bit.

4. The receiver can only decrypt one ciphertext.

9.5 Yao’s Garbled Circuit

9.6 Setup

Yao’s Garbled Circuits is presented as a solution to Yao’s Million-
aires’ problem, which asks whether two millionaires can compete for
bragging rights of which is richer without revealing their wealth to
each other. It started the area of secure computation. We will present
a solution for the two party problem; it can be extended to a polyno-
mial number of parties, using the techniques from last lecture.

The solution we saw previously needed an interaction for each
AND gate. Yao’s solution requires only one message, so it provides
a constant size of interaction. We present a solution only for semi
honest security. This can be amplified to malicious security, but there
are more efficient ways of amplifying this than what we saw last
lecture.

9.6.1 Secure Computation

Recall our definition of secure computation. We define ideal and
real worlds. Security is defined to hold if anything an attacker can
achieve in the real world can also be achieved by an ideal attacker in
the ideal world. We define the ideal world to have the properties that
we desire. For security to hold these properties must also hold in the
real world.

9.6.2 (Garble,Eval)

We will provide a definition, similar to how we define encryption,
that allows us avoid dealing with simulators all the time.



182 a course in theory of cryptography

Yao’s Garbled Circuit is defined as two efficient algorithms (Garble,Eval).
Let the circuit C have n input wires. Garble produces the garbled cir-
cuit and two labels for each input wire. The labels are for each of 0

and 1 on that wire and are like encryption keys.

(C̃, {ℓi,b}i∈[n],b∈{0,1})← Garble(1k, C)

To evaluate the circuit on a single input we must choose a value
for each of the n input wires. Given n of 2n input keys, Eval can
evaluate the circuit on those keys and get the circuit result.

C(x)← Eval(C̃, {ℓi,xi}i∈[n])

Correctness Correctness is as usual, if you garble honestly, evaluation
should produce the correct result.

∀C, xPr[C(x) = Eval(C̃, {li,xi}), (C̃, {ℓi,b}) = Garble(1k, C)] = 1−neg(k)

Security For security we require that a party receiving a garbled cir-
cuit and n inputs labels can not computationally distinguish the joint
distribution of the circuits and labels from the distribution produced
by a simulator with access to the circuit and its evaluation on the in-
put that the labels represent. The simulator does not have access to
the actual inputs. If this holds, the party receiving the garbled circuit
and n labels can not determine the inputs.

∃Sim : ∀C, x

(C̃, {ℓi,xi}i∈[n]) ≃ Sim(1k, C, C(x)) where

(C̃, {ℓi,b}i∈[n],b∈{0,1})← Garble(1k, C)

For simplicity we pass the circuit to the simulator. You could also
use universal circuits and pass in with the inputs the specific circuit
that the universal circuit should realize.

9.7 Use for Semi-honest two party secure communication

Alice, with input x1, and Bob, with input x2, have a circuit, C, that
they want to evaluate securely. The size of their combined inputs is n,
so |x1| = n1, |x2| = n− n1, |x1|+ |x2| = n. They can do this by Alice
garbling a circuit and sending input wire labels to Bob, as in Figure
9.3.

Alice garbles the circuit and passes it to Bob, C̃. Alice passes the
labels for her input directly to Bob, {ℓi,x1

i
}i∈[n]/[n2]

. Alice passes all
the labels for Bob’s input wires into oblivious transfer, {ℓi,bi

}i∈[n]/[n1],b∈{0,1},
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from which Bob can retrieve the labels for his actual inputs, {ℓi,x2
i
}i∈[n]/[n1]

.
Bob now has the garbled circuit and one label for each input wire.
He evaluates the garbled circuit on those garbled inputs and learns
C(x1||x2). Bob does not learn anything besides the result as he has
only the garbled circuit and n garbled inputs. Alice does not learn
anything as she uses oblivious transfer to give Bob his input labels
and receives nothing in reply.

Alice: C, x1

(C̃, {ℓi,b})← Garble

Bob: C, x2

C̃−→
S0

out is 0 , S1
out is 1

−−−−−−−−−−−−→

{ℓi,x1
i
}i∈[n]/[n2]

−−−−−−−−−→

OTℓi,1

ℓi,0 {ℓi,x2
i
}i∈[n]/[n1]

∀i ∈ [n]/[n1]−−−−−−−−→

Figure 9.3: Messages in Yao’s Garbeled
Circuit

9.7.1 Construction of Garbled Circuits

We would like to garble a circuit such that there are two keys for
each input wire. Correctness should be that given one of the two
keys for each wire we can compute the output for the inputs those
keys correspond to. Security should be that given one key for each
wire you can only learn the output, not the actual inputs.

We build the circuit as a bunch of NAND gates that outputs one
bit. If more bits are required, this can be done multiple times. NAND
gates can create any logic needed. We define the following sets:

W = the set of wires in the circuit

G = the set of gates in the circuit.

For each wire in the circuit, sample two keys to label the possible
inputs 0 and 1 to the wire

∀w ∈W S0
w, S1

w ← {0, 1}k.

We can think of these as the secret keys to an encryption scheme
(Gen, Enc, Dec). For such a scheme we can always replace the secret
key with the random bits fed into Gen.
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Wires For each wire in the circuit we will have an invariant that
the evaluator can only get one of the wires two encrypted values.
Consider an internal wire fed by the evaluation of a gate. The gate
receives two encrypted values as inputs and produces one encrypted
output. The output will be one of the two labels for that wire and the
evaluator will have no way of obtaining the other label for that wire.
For example on wire wi, the evaluator will only learn the value for 1,
S1

wi
. We ensure this for the input wires by giving the evaluator only

one of the two encrypted values for the wire.

Gates For every gate in the circuit we create four cipher texts. For
each choice of inputs we encrypt the output key under each of the
input keys. Let gate g have inputs w1, w2 and output w3,

e00
g = EncS0

w1
(EncS0

w2
(S1

w3
, 0k))

e01
g = EncS0

w1
(EncS1

w2
(S1

w3
, 0k))

e10
g = EncS1

w1
(EncS0

w2
(S1

w3
, 0k))

e11
g = EncS1

w1
(EncS1

w2
(S0

w3
, 0k)).

We add k zeros at the end.

Final Output For the final output wire, Sout, we can just give out
their values,

S0
out corresponds to 0

S1
out corresponds to 1.

C̃ For each gate, Alice sends Bob a random permutation of the set
of four encrypted output values.

{eC1,C2
g } ∀g ∈ G C1, C2 ∈ {0, 1}.

For each gate, Alice sends Bob a random permutation of the set of
four encrypted output values

Evaluation With an encrypted gate g, input keys Sw1 Sw2 for the
input wires, and four randomly permuted encryptions of the output
keys, ea

g, eb
g, ec

g, ed
g, Bob can evaluate the gate to find the corresponding

key Sw3 for the output wire. Bob can decrypt each of the encrypted
output keys until he finds one that decrypts to a string ending in
the proper number of 0’s, which is very likely to contain the proper
output key. We can increase the probability of the correct key by
increasing the number of 0’s.

∃i ∈ {a, b, c, d} : DecSw2
(DecSw1

(ei
g)) = Sw3 , 0k
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Given input wire labels {ℓi,xi}i∈[n] the complete encrypted circuit
C̃ is evaluated by working up from the input gates.

The evaluator should not be able to infer anything except what
they could infer in the ideal world. As a simple example, if the eval-
uator supplies one input to a circuit of just one NAND gate, they
would be able to infer the input of the other party. However, this is
true is the ideal world as well.

9.8 Proof Intuition

What intuition can we offer that the distribution of C̃ with one label
per input wire is indistinguishable from what which a simulator
could produce with access to the output? For each input wire we
are only given one key. As we are doing double encryption, for each
input gate we only have the keys needed to decrypt one of the four
possible outputs. The other three are protected by semantic security.
So from each input gate we learn only one key compounding to
its output wire. As the output labels were randomized, we also do
not know if that key corresponds to a 0 or a 1. For the next level of
gates we again have only one key per input wire, and our argument
continues. So for each wire of the circuit we can only know one key
corresponding to an output value for the wire. Everything else is
random garbage. As we control the mapping from output keys to
output values, we can set this to whatever is needed to match the
expected output.

Security only holds for evaluation of the circuit with one set of
input values and we assume that the circuit is combinatorial and thus
acyclic.

9.9 Malicious attacker intead of semi-honest attacker

The assumption we had before consisted of a semi-honest attacker
instead of a malicious attacker. A malicious attacker does not have
to follow the protocol, and may instead alter the original protocol.
The main idea here is that we can convert a protocol aimed at semi-
honest attackers into one that will work with malicious attackers.

At the beginning of the protocol, we have each party commit to its
inputs: Given a commitment protocol com, Party 1 produces

c1 = com(x1; w1)

d1 = com(r1; ϕ1)

Party 2 produces

c2 = com(x2; w2)
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d2 = com(r2; ϕ2)

We have the following guarantee: ∃xi, ri, wi, ϕi such that ci =

com(xi; wi) ∧ di = com(ri; ϕi) ∧ t = π(i, transcript, xi, ri), where
transcript is the set of messages sent in the protocol so far.

Here we have a potential problem. Since both parties are choosing
their own random coins, we have to be able to enforce that the coins
are indeed random. We can solve this by using the following protocol:

d1 = com(s1; ϕ1)
-

d2 = com(s2; ϕ2)
�

s
′
2

-
s
′
1

�

We calculate r1 = s1 ⊕ s
′
1, and r2 = s2 ⊕ s

′
2. As long as one party

is picking the random coins honestly, both parties would have truly
random coins.

Furthermore, during the first commitment phase, we want to make
sure that the committing party actually knows the value that is being
committed to. Thus, we also attach along with the commitment a
zero-knowledge proof of knowledge (ZK-PoK) to prove that the
committing party knows the value that is being committed to.

9.9.1 Zero-knowledge proof of knowledge (ZK-PoK)

Definition 9.1 (ZK-PoK). Zero-knowlwedge proof of knowledge (ZK-
PoK) is a zero-knowledge proof system (P, V) with the property proof of
knowledge with knowledge error κ:
∃ a PPT E (knowledge extractor) such that ∀x ∈ L and ∀P∗ (possibly

unbounded), it holds that if Pr[OutV(P∗(x, w)↔ V(x))] > κ(x), then

Pr[EP∗(x) ∈ R(x)] ≥ Pr[OutV(P∗ ↔ V(x))] = 1]− κ(x).

Here we have L be the language, R be the relation, and R(x) is the set such
that ∀w ∈ R(x), (x, w) ∈ R.

Given a zero-knowledge proof system, we can construct a ZK-PoK
system for statement x ∈ L with witness w as follows:
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P V

r ← {0, 1}|w|
c1 = com(r; ω)
c2 = com(r⊕ w; ϕ)

-

b
�

if b = 0, open c1 to reveal r
else open c2 to reveal r⊕ w

-

ZK Proof

The last ZK proof proves that ∃r, w, ω, ϕ such that (x, w) ∈ R and
c1 = com(r; ω), c2 = com(r⊕ w; ϕ).

Exercises

Exercise 9.1. Given a (secure against malicious adversaries) two-party
secure computation protocol (and nothing else) construct a (secure against
malicious adversaries) three-party secure computation protocol.





10
Obfuscation

10.1 iO for Polynomial-sized Circuits

Definition 10.1 (Indistinguishability Obfuscator for NC1). Let Cκ be
the collection of circuits of size O(κ) and depth O(log κ) with respect to
gates of bounded fan-in. Then a uniform PPT machine iONC1 is an indistin-
guishability obfuscator for circuit class NC1 if it is an indistinguishability
obfuscator for Cκ .

Given an indistinguishability obfuscator iONC1 for circuit class
NC1, we shall demonstrate how to achieve an indistinguishability
obfuscator iO for all polynomial-sized circuits. The amplification
relies on fully homomorphic encryption (FHE).

Definition 10.2 (Homomorphic Encryption). A homomorphic encryp-
tion scheme is a tuple of PPT algorithms (Gen,Enc,Dec,Eval) as follows:

• (Gen,Enc,Dec) is a semantically-secure public-key encryption scheme.

• Eval(pk, C, e) takes public key pk, an arithmetic circuit C, and ciphertext
e = Enc(pk, x) of some circuit input x, and outputs Enc(pk, C(x)).

As an example, the ElGamal encryption scheme is homomorphic
over the multiplication function. Consider a cyclic group G of order
q and generator g, and let sk = a and pk = ga. For ciphertexts
Enc(pk, m1) = (gr1 , gar1 · m1) and Enc(pk, m2) = (gr2 , gar2 · m2),
observe that

Enc(pk, m1) ·Enc(pk, m2) = (gr1+r2 , ga(r1+r2) ·m1 ·m2) = Enc(pk, m1 ·m2)

Note that this scheme becomes additively homomorphic by encrypt-
ing gm instead of m.

Definition 10.3 (Fully Homomorphic Encryption). An encryption
scheme is fully homomorphic if it is both compact and homomorphic for
the class of all arithmetic circuits. Compactness requires that the size of the
output of Eval(·, ·, ·) is at most polynomial in the security parameter κ.
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10.1.1 Construction

Let (Gen,Enc,Dec,Eval) be a fully homomorphic encryption scheme.
We require that Dec be realizable by a circuit in NC1. The obfuscation
procedure accepts a security parameter κ and a circuit C whose size
is at most polynomial in κ.

1. Generate (pk1, sk1)← Gen(1κ) and (pk2, sk2)← Gen(1κ).

2. Encrypt C, encoded in canonical form, as e1 ← Enc(pk1, C) and
e2 ← Enc(pk2, C).

3. Output an obfuscation σ = (iONC1(P), pk1, pk2, e1, e2) of program
Ppk1,pk2,sk1,e1,e2 as described below.

The evaluation procedure accepts the obfuscation σ and program
input x.

1. Let U be a universal circuit that computes C(x) given a circuit de-
scription C and input x, and denote by Ux the circuit U(·, x) where
x is hard-wired. Let R1 and R2 be the circuits which compute
f1 ← Eval(Ux, e1) and f2 ← Eval(Ux, e2), respectively.

2. Denote by ω1 and ω2 the set of all wires in R1 and R2, respectively.
Compute π1 : ω1 → {0, 1} and π2 : ω2 → {0, 1}, which yield the
value of internal wire w ∈ ω1, ω2 when applying x as the input to
R1 and R2.

3. Output the result of running Ppk1,pk2,sk1,e1,e2(x, f1, π1, f2, π2).

Program Ppk1,pk2,sk1,e1,e2 has pk1, pk2, sk1, e1, and e2 embedded.

1. Check whether R1(x) = f1 ∧ R2(x) = f2. π1 and π2 enable this
check in logarithmic depth.

2. If the check succeeds, output Dec(sk1, f1); otherwise output ⊥.

The use of two key pairs and two encryptions of C, similar to
CCA1-secure schemes seen previously, eliminates the virtual black-
box requirement for concealing sk1 within iONC1(Ppk1,pk2,sk1,e1,e2).

10.1.2 Proof of Security

We prove the indistinguishability property for this construction
through a hybrid argument.

Proof. Through the sequence of hybrids, we gradually transform an
obfuscation of circuit C1 into an obfuscation of circuit C2, with each
successor being indistinguishable from its antecedent.
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H0 : This corresponds to an honest execution of iO(C1). Recall that
e1 = Enc(pk1, C1), e2 = Enc(pk2, C1), and σ = (iONC1(Ppk1,pk2,sk1,e1,e2), . . .).

H1 : We instead generate e2 = Enc(pk2, C2), relying on the semantic
security of the underlying fully homomorphic encryption scheme.

H2 : We alter program Ppk1,pk2,sk2,e1,e2 such that it instead embeds sk2

and outputs Dec(sk2, f2). The output of the obfuscation procedure
becomes σ = (iONC1(Ppk1,pk2,sk2,e1,e2 , . . .); we rely on the properties
of functional equivalence and indistinguishability of iONC1 .

H3 : We generate e1 = Enc(pk1, C1) since sk1 is now unused, relying
again on the semantic security of the fully homomorphic encryp-
tion scheme.

H4 : We revert to the original program Ppk1,pk2,sk1,e1,e2 and arrive at
an honest execution of iO(C1).

10.2 Identity-Based Encryption

Another use of indistinguishability obfuscation is to realize identity-
based encryption (IBE).

Definition 10.4 (Identity-Based Encryption). An identity-based en-
cryption scheme is a tuple of PPT algorithms (Setup,KeyGen,Enc,Dec)
as follows:

• Setup(1κ) generates and outputs a master public/private key pair
(mpk,msk).

• KeyGen(msk, id) derives and outputs a secret key skid for identity id.

• Enc(mpk, id, m) encrypts message m under identity id and outputs the
ciphertext.

• Dec(skid, c) decrypts ciphertext c and outputs the corresponding message
if c is a valid encryption under identity id, or ⊥ otherwise.

We combine an indistinguishability obfuscator iO with a digital
signature scheme (Gen,Sign,Verify).

• Let Setup ≡ Gen and KeyGen ≡ Sign.

• Enc outputs iO(Pm), where Pm is a program that outputs (embed-
ded) message m if input sk is a secret key for the given id, or ⊥
otherwise.

• Dec outputs the result of c(skid).
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However, this requires that we have encryption scheme where the
“signatures” do not exist. We therefore investigate an alternative
scheme. Let (K, P, V) be a non-interactive zero-knowledge (NIZK)
proof system. Denote by Com(·; r) the commitment algorithm of a
non-interactive commitment scheme with explicit random coin r.

• Let σ be a common random string. Setup(1κ) outputs (mpk =

(σ, c1, c2),msk = r1), where c1 = Com(0; r1) and c2 = Com(0|id|; r2).

• KeyGen(msk, id) produces a proof π = P(σ, xid, s) for the following
language L: x ∈ L if there exists s such that

c1 = Com(0; s)︸ ︷︷ ︸
Type I witness

∨ (c2 = Com(id∗; s) ∧ id∗ ̸= id)︸ ︷︷ ︸
Type II witness

• Let Pid,m be a program which outputs m if V(σ, xid, πid) = 1 or
outputs ⊥ otherwise.

Enc(mpk, id, m) outputs iO(Pid,m).

We briefly sketch the hybrid argument:

H0 : This corresponds to an honest execution as described above.

H1 : We let c2 = Com(id∗; r2), relying on the hiding property of the
commitment scheme.

H2 : We switch to the Type II witness using πidi
∀i ∈ [q], correspond-

ing to the queries issued by the adversary during the first phase of
the selective-identity security game.

H3 : We let c1 = Com(1; r1).

10.3 Digital Signature Scheme via Indistinguishable Obfuscation

A digital signature scheme can be constructed via indistinguish-
able obfuscation (iO). A digital signature scheme is made up of
(Setup,Sign,Verify).
(vk, sk)← Setup(1k):

sk = key of puncturable function and the seed of the PRF Fk

vk = iO(Pk) where Pk is the program:
Pk(m, σ):

for some OWF function f
return 1 if f (σ) = f (Fk(m))

return 0 otherwise
σ← Sign(sk, m): Output Fk(m).
Verify(vk, m, σ): Output Pk(m, σ).



obfuscation 193

Our security requirements will be that the adversary does wins the
following game negligibly:

Challenger Adversary
(vk, sk) = Setup(1k) and
picks random m

Pk,m→
œ,m∗←
Adversary wins game if Verify(vk, m∗, σ) = 1

To prove the security of this system, we use a hybrid argument. H0 is
as above.
H1: Adjust vk so that vk = iO(Pk,m,α) where α = Fk(m) and Pk,m,α is
the program such that:

Pk,m,α(m∗, σ):
for some OWF f

if m = m∗:
if f (σ) = f (α) return 1

otherwise return 0

else proceed as Pk from before
if f (σ) = f (Fk(m∗)) return 1

otherwise return 0

Note that this program does not change its output for any value. This
is indistinguishable from H0 by indistinguishability obfuscation.
H2: Adjust α so that it is a randomly sampled value. The indistin-
guishability of H2 and H1 follows from the security of PRG.
H3: Adjust the program such that instead of α it relies on some β that
is compared instead f (α) in the third line.

Any adversary that can break H3 non-negligibly can break the
OWF f with at the value β.

10.4 Public Key Encryption via Indistinguishable Obfuscation

A public key encryption scheme can be constructed via indistinguish-
able obfuscation. A public key encryption scheme is made up of
(Gen, Enc, Dec). The PRG used below is a length doubling PRG.
(pk, sk)← Gen(1k)

sk = key of puncturable function and the seed of the PRF Fk

pk = iO(Pk) where Pk is the program:
Pk(m, r):

t = PRG(r)
Output c = (t, Fk(t)⊕m)

Enc(pk, m): Sample r and output (pk(m, r)).
Dec(sk = k, c = (c1, c2)): Output Fk(sk, c1)⊕ c2.
Our security requirements will be that the adversary does wins the
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following game negligibly:
Challenger Adversary
(pk, sk) = Gen(1k) and
Randomly sample b from {0, 1} and
c∗ = Enc(pk, b) and

Pk,c∗→
b∗←
Adversary wins game if b = b∗

To prove the security of this system, we use a hybrid argument. H0 is
as above.
H1: Adjust pk so that pk = iO(Pk,α,t) where α = Fk(t) and Pk,α,t is the
program such that:

Pk,α,t(m, r):
t∗ = PRG(r)
if t∗ = t, output (t∗, α⊕m)

else output (t∗, Fk(t∗)⊕m)

Note that this program does not change its output for any value. This
is indistinguishable from H0 by indistinguishability obfuscation.
H2: Adjust α so that it is a randomly sampled value.
H3: Adjust the program such that t∗ is randomly sampled and is not
in the range of the PRG.

Any adversary that can win H3 can guess a random value non-
negligibly.

10.5 Indistinguishable Obfuscation Construction from NC1 iO

A construction of indistinguishable obfuscation from iO for circuits in
NC1 is as follows:

Let Pk,C(x) be the circuit that outputs the garbled circuit ˜UC(C, x)
with randomness Fk(x) which is a punctured (at k) PRF in NC1

Note that UC(C, x) outputs C(x) (UC is the “universal” circuit)
iO(C) → sample k randomly from {0, 1}|x| and output iONC1(Pk,C)

padded to a length l
As before, we use a hybrid argument to show the security for iO.

H0: iO(C) = iONC1(Pk,C) as above.
H f inal = H2n : iO(pk, c2)

H1 · · ·Hi: Create a program Qk,c1,c2,i(x) and obfuscate it.
Qk,c1,c2,i(x):
Sample k randomly
if x ≥ i, return Pk,c1(x)
else , return Pk,c2(x)

Note that Hi and Hi+1 are indistinguishable for any value other than
x = i.
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Hi,1 (between Hi and Hi+1): Create a program Qk,c1,c2,i,α(x), where
α = Qk,c1,c2,i(x) and obfuscate it.

Qk,c1,c2,i,α(x):
Sample k randomly
if x = i, return α

else , return Qk,c1,c2,i(x)
Hi,2: Replace α with a random β using fresh coins
Hi,3: Create the c2(x) value using fresh coins
Hi,4: Create the c2(x) value using Fk(x)
Hi,5: Finish the migration to Qk,c1,c2,i+1

Note that at H f inal , the circuit being obfuscated is completely
changed from c1 to c2.
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